本文整理汇总了Python中vtk.vtkDelaunay2D方法的典型用法代码示例。如果您正苦于以下问题:Python vtk.vtkDelaunay2D方法的具体用法?Python vtk.vtkDelaunay2D怎么用?Python vtk.vtkDelaunay2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vtk
的用法示例。
在下文中一共展示了vtk.vtkDelaunay2D方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update
# 需要导入模块: import vtk [as 别名]
# 或者: from vtk import vtkDelaunay2D [as 别名]
def update(self):
delaunay = vtkDelaunay2D()
delaunay.SetInput(self.input_)
delaunay.SetTolerance(self.tolerance)
delaunay.SetAlpha(self.alpha)
delaunay.Update()
self.output_ = delaunay.GetOutput()
示例2: create_actor_delaunay
# 需要导入模块: import vtk [as 别名]
# 或者: from vtk import vtkDelaunay2D [as 别名]
def create_actor_delaunay(pts, color, **kwargs):
""" Creates a VTK actor for rendering triangulated plots using Delaunay triangulation.
Keyword Arguments:
* ``d3d``: flag to choose between Delaunay2D (``False``) and Delaunay3D (``True``). *Default: False*
:param pts: points
:type pts: vtkFloatArray
:param color: actor color
:type color: list
:return: a VTK actor
:rtype: vtkActor
"""
# Keyword arguments
array_name = kwargs.get('name', "")
array_index = kwargs.get('index', 0)
use_delaunay3d = kwargs.get("d3d", False)
# Create points
points = vtk.vtkPoints()
points.SetData(pts)
# Create a PolyData object and add points
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
# Apply Delaunay triangulation on the poly data object
triangulation = vtk.vtkDelaunay3D() if use_delaunay3d else vtk.vtkDelaunay2D()
triangulation.SetInputData(polydata)
# Map triangulated surface to the graphics primitives
mapper = vtk.vtkDataSetMapper()
mapper.SetInputConnection(triangulation.GetOutputPort())
mapper.SetArrayName(array_name)
mapper.SetArrayId(array_index)
# Create an actor and set its properties
actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor.GetProperty().SetColor(*color)
# Return the actor
return actor
示例3: delaunay_2d
# 需要导入模块: import vtk [as 别名]
# 或者: from vtk import vtkDelaunay2D [as 别名]
def delaunay_2d(poly_data, tol=1e-05, alpha=0.0, offset=1.0, bound=False,
inplace=False, edge_source=None, progress_bar=False):
"""Apply a delaunay 2D filter along the best fitting plane.
Parameters
----------
tol : float
Specify a tolerance to control discarding of closely spaced
points. This tolerance is specified as a fraction of the diagonal
length of the bounding box of the points.
alpha : float
Specify alpha (or distance) value to control output of this
filter. For a non-zero alpha value, only edges or triangles
contained within a sphere centered at mesh vertices will be
output. Otherwise, only triangles will be output.
offset : float
Specify a multiplier to control the size of the initial, bounding
Delaunay triangulation.
bound : bool
Boolean controls whether bounding triangulation points (and
associated triangles) are included in the output. (These are
introduced as an initial triangulation to begin the triangulation
process. This feature is nice for debugging output.)
inplace : bool
If True, overwrite this mesh with the triangulated mesh.
edge_source : pyvista.PolyData, optional
Specify the source object used to specify constrained edges and
loops. (This is optional.) If set, and lines/polygons are
defined, a constrained triangulation is created. The
lines/polygons are assumed to reference points in the input point
set (i.e. point ids are identical in the input and source). Note
that this method does not connect the pipeline. See
SetSourceConnection for connecting the pipeline.
progress_bar : bool, optional
Display a progress bar to indicate progress.
"""
alg = vtk.vtkDelaunay2D()
alg.SetProjectionPlaneMode(vtk.VTK_BEST_FITTING_PLANE)
alg.SetInputDataObject(poly_data)
alg.SetTolerance(tol)
alg.SetAlpha(alpha)
alg.SetOffset(offset)
alg.SetBoundingTriangulation(bound)
if edge_source is not None:
alg.SetSourceData(edge_source)
_update_alg(alg, progress_bar, 'Computing 2D Triangulation')
# Sometimes lines are given in the output. The `.triangulate()` filter cleans those
mesh = _get_output(alg).triangulate()
if inplace:
poly_data.overwrite(mesh)
else:
return mesh
示例4: createDEM_v1
# 需要导入模块: import vtk [as 别名]
# 或者: from vtk import vtkDelaunay2D [as 别名]
def createDEM_v1():
ds = xr.open_dataset('../data/output/Peru_20160601-20180530_comp4.nc')
points = vtk.vtkPoints()
numPoints = ds.south_north.size*ds.west_east.size
print('Write points \n')
for i,j in product(ds.south_north.values,ds.west_east.values):
points.InsertNextPoint(ds.lat.isel(south_north=i,west_east=j), ds.lon.isel(south_north=i,west_east=j), ds.HGT.isel(south_north=i,west_east=j).values/6370000.0)
print('Create unstructured grid \n')
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
delaunay = vtk.vtkDelaunay2D()
delaunay.SetInputData(polydata)
delaunay.Update()
# subdivision = vtk.vtkButterflySubdivisionFilter()
# subdivision.SetInputConnection(delaunay.GetOutputPort())
# subdivision.Update()
#smoother = vtk.vtkWindowedSincPolyDataFilter()
#smoother.SetInputConnection(delaunay.GetOutputPort())
#smoother.SetNumberOfIterations(5)
#smoother.BoundarySmoothingOff()
#smoother.FeatureEdgeSmoothingOff()
#smoother.SetFeatureAngle(120.0)
#smoother.SetPassBand(.001)
#smoother.NonManifoldSmoothingOff()
#smoother.NormalizeCoordinatesOff()
#smoother.Update()
appendFilter = vtk.vtkAppendFilter()
appendFilter.AddInputData(delaunay.GetOutput())
appendFilter.Update()
unstructuredGrid = vtk.vtkUnstructuredGrid()
unstructuredGrid.ShallowCopy(appendFilter.GetOutput())
writer = vtk.vtkXMLUnstructuredGridWriter()
writer.SetFileName('cosipy.vtu')
writer.SetInputData(unstructuredGrid)
writer.Write()
示例5: set_topography
# 需要导入模块: import vtk [as 别名]
# 或者: from vtk import vtkDelaunay2D [as 别名]
def set_topography(self):
# Create points on an XY grid with random Z coordinate
vertices = copy.copy(self.geo_model._grid.topography.values)
points = vtk.vtkPoints()
# for v in vertices:
# v[-1] = v[-1]
# points.InsertNextPoint(v)
if self.ve !=1:
vertices[:, 2]= vertices[:, 2]*self.ve
points.SetData(numpy_to_vtk(vertices))
# Add the grid points to a polydata object
polydata = vtk.vtkPolyData()
polydata.SetPoints(points)
#
# glyphFilter = vtk.vtkVertexGlyphFilter()
# glyphFilter.SetInputData(polydata)
# glyphFilter.Update()
#
# # Create a mapper and actor
# pointsMapper = vtk.vtkPolyDataMapper()
# pointsMapper.SetInputConnection(glyphFilter.GetOutputPort())
#
# pointsActor = vtk.vtkActor()
# pointsActor.SetMapper(pointsMapper)
# pointsActor.GetProperty().SetPointSize(3)
# pointsActor.GetProperty().SetColor(colors.GetColor3d("Red"))
# Triangulate the grid points
delaunay = vtk.vtkDelaunay2D()
delaunay.SetInputData(polydata)
delaunay.Update()
# Create a mapper and actor
triangulatedMapper = vtk.vtkPolyDataMapper()
triangulatedMapper.SetInputConnection(delaunay.GetOutputPort())
triangulatedActor = vtk.vtkActor()
triangulatedActor.SetMapper(triangulatedMapper)
self.topography_surface = triangulatedActor
self._topography_polydata = polydata
self._topography_delauny = delaunay
self.ren_list[0].AddActor(triangulatedActor)
self.ren_list[1].AddActor(triangulatedActor)
self.ren_list[2].AddActor(triangulatedActor)
self.ren_list[3].AddActor(triangulatedActor)
try:
if self.geo_model.solutions.geological_map is not None:
self.set_geological_map()
except AttributeError as ae:
warnings.warn(str(ae))