本文整理汇总了Python中vgslspecs.py方法的典型用法代码示例。如果您正苦于以下问题:Python vgslspecs.py方法的具体用法?Python vgslspecs.py怎么用?Python vgslspecs.py使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vgslspecs
的用法示例。
在下文中一共展示了vgslspecs.py方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: InitNetwork
# 需要导入模块: import vgslspecs [as 别名]
# 或者: from vgslspecs import py [as 别名]
def InitNetwork(input_pattern,
model_spec,
mode='eval',
initial_learning_rate=0.00005,
final_learning_rate=0.00005,
halflife=1600000,
optimizer_type='Adam',
num_preprocess_threads=1,
reader=None):
"""Constructs a python tensor flow model defined by model_spec.
Args:
input_pattern: File pattern of the data in tfrecords of Example.
model_spec: Concatenation of input spec, model spec and output spec.
See Build below for input/output spec. For model spec, see vgslspecs.py
mode: One of 'train', 'eval'
initial_learning_rate: Initial learning rate for the network.
final_learning_rate: Final learning rate for the network.
halflife: Number of steps over which to halve the difference between
initial and final learning rate for the network.
optimizer_type: One of 'GradientDescent', 'AdaGrad', 'Momentum', 'Adam'.
num_preprocess_threads: Number of threads to use for image processing.
reader: Function that returns an actual reader to read Examples from input
files. If None, uses tf.TFRecordReader().
Eval tasks need only specify input_pattern and model_spec.
Returns:
A VGSLImageModel class.
Raises:
ValueError: if the model spec syntax is incorrect.
"""
model = VGSLImageModel(mode, model_spec, initial_learning_rate,
final_learning_rate, halflife)
left_bracket = model_spec.find('[')
right_bracket = model_spec.rfind(']')
if left_bracket < 0 or right_bracket < 0:
raise ValueError('Failed to find [] in model spec! ', model_spec)
input_spec = model_spec[:left_bracket]
layer_spec = model_spec[left_bracket:right_bracket + 1]
output_spec = model_spec[right_bracket + 1:]
model.Build(input_pattern, input_spec, layer_spec, output_spec,
optimizer_type, num_preprocess_threads, reader)
return model
示例2: Build
# 需要导入模块: import vgslspecs [as 别名]
# 或者: from vgslspecs import py [as 别名]
def Build(self, input_pattern, input_spec, model_spec, output_spec,
optimizer_type, num_preprocess_threads, reader):
"""Builds the model from the separate input/layers/output spec strings.
Args:
input_pattern: File pattern of the data in tfrecords of TF Example format.
input_spec: Specification of the input layer:
batchsize,height,width,depth (4 comma-separated integers)
Training will run with batches of batchsize images, but runtime can
use any batch size.
height and/or width can be 0 or -1, indicating variable size,
otherwise all images must be the given size.
depth must be 1 or 3 to indicate greyscale or color.
NOTE 1-d image input, treating the y image dimension as depth, can
be achieved using S1(1x0)1,3 as the first op in the model_spec, but
the y-size of the input must then be fixed.
model_spec: Model definition. See vgslspecs.py
output_spec: Output layer definition:
O(2|1|0)(l|s|c)n output layer with n classes.
2 (heatmap) Output is a 2-d vector map of the input (possibly at
different scale).
1 (sequence) Output is a 1-d sequence of vector values.
0 (value) Output is a 0-d single vector value.
l uses a logistic non-linearity on the output, allowing multiple
hot elements in any output vector value.
s uses a softmax non-linearity, with one-hot output in each value.
c uses a softmax with CTC. Can only be used with s (sequence).
NOTE Only O1s and O1c are currently supported.
optimizer_type: One of 'GradientDescent', 'AdaGrad', 'Momentum', 'Adam'.
num_preprocess_threads: Number of threads to use for image processing.
reader: Function that returns an actual reader to read Examples from input
files. If None, uses tf.TFRecordReader().
"""
self.global_step = tf.Variable(0, name='global_step', trainable=False)
shape = _ParseInputSpec(input_spec)
out_dims, out_func, num_classes = _ParseOutputSpec(output_spec)
self.using_ctc = out_func == 'c'
images, heights, widths, labels, sparse, _ = vgsl_input.ImageInput(
input_pattern, num_preprocess_threads, shape, self.using_ctc, reader)
self.labels = labels
self.sparse_labels = sparse
self.layers = vgslspecs.VGSLSpecs(widths, heights, self.mode == 'train')
last_layer = self.layers.Build(images, model_spec)
self._AddOutputs(last_layer, out_dims, out_func, num_classes)
if self.mode == 'train':
self._AddOptimizer(optimizer_type)
# For saving the model across training and evaluation
self.saver = tf.train.Saver()