本文整理汇总了Python中vgslspecs.VGSLSpecs方法的典型用法代码示例。如果您正苦于以下问题:Python vgslspecs.VGSLSpecs方法的具体用法?Python vgslspecs.VGSLSpecs怎么用?Python vgslspecs.VGSLSpecs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vgslspecs
的用法示例。
在下文中一共展示了vgslspecs.VGSLSpecs方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ExpectScaledSize
# 需要导入模块: import vgslspecs [as 别名]
# 或者: from vgslspecs import VGSLSpecs [as 别名]
def ExpectScaledSize(self, spec, target_shape, factor=1):
"""Tests that the output of the graph of the given spec has target_shape."""
with tf.Graph().as_default():
with self.test_session() as sess:
self.SetupInputs()
# Only the placeholders are given at construction time.
vgsl = vgslspecs.VGSLSpecs(self.ph_widths, self.ph_heights, True)
outputs = vgsl.Build(self.ph_image, spec)
# Compute the expected output widths from the given scale factor.
target_widths = tf.div(self.in_widths, factor).eval()
target_heights = tf.div(self.in_heights, factor).eval()
# Run with the 'real' data.
tf.global_variables_initializer().run()
res_image, res_widths, res_heights = sess.run(
[outputs, vgsl.GetLengths(2), vgsl.GetLengths(1)],
feed_dict={self.ph_image: self.in_image,
self.ph_widths: self.in_widths,
self.ph_heights: self.in_heights})
self.assertEqual(tuple(res_image.shape), target_shape)
if target_shape[1] > 1:
self.assertEqual(tuple(res_heights), tuple(target_heights))
if target_shape[2] > 1:
self.assertEqual(tuple(res_widths), tuple(target_widths))
示例2: ExpectScaledSize
# 需要导入模块: import vgslspecs [as 别名]
# 或者: from vgslspecs import VGSLSpecs [as 别名]
def ExpectScaledSize(self, spec, target_shape, factor=1):
"""Tests that the output of the graph of the given spec has target_shape."""
with tf.Graph().as_default():
with self.test_session() as sess:
self.SetupInputs()
# Only the placeholders are given at construction time.
vgsl = vgslspecs.VGSLSpecs(self.ph_widths, self.ph_heights, True)
outputs = vgsl.Build(self.ph_image, spec)
# Compute the expected output widths from the given scale factor.
target_widths = tf.div(self.in_widths, factor).eval()
target_heights = tf.div(self.in_heights, factor).eval()
# Run with the 'real' data.
tf.initialize_all_variables().run()
res_image, res_widths, res_heights = sess.run(
[outputs, vgsl.GetLengths(2), vgsl.GetLengths(1)],
feed_dict={self.ph_image: self.in_image,
self.ph_widths: self.in_widths,
self.ph_heights: self.in_heights})
self.assertEqual(tuple(res_image.shape), target_shape)
if target_shape[1] > 1:
self.assertEqual(tuple(res_heights), tuple(target_heights))
if target_shape[2] > 1:
self.assertEqual(tuple(res_widths), tuple(target_widths))
示例3: Build
# 需要导入模块: import vgslspecs [as 别名]
# 或者: from vgslspecs import VGSLSpecs [as 别名]
def Build(self, input_pattern, input_spec, model_spec, output_spec,
optimizer_type, num_preprocess_threads, reader):
"""Builds the model from the separate input/layers/output spec strings.
Args:
input_pattern: File pattern of the data in tfrecords of TF Example format.
input_spec: Specification of the input layer:
batchsize,height,width,depth (4 comma-separated integers)
Training will run with batches of batchsize images, but runtime can
use any batch size.
height and/or width can be 0 or -1, indicating variable size,
otherwise all images must be the given size.
depth must be 1 or 3 to indicate greyscale or color.
NOTE 1-d image input, treating the y image dimension as depth, can
be achieved using S1(1x0)1,3 as the first op in the model_spec, but
the y-size of the input must then be fixed.
model_spec: Model definition. See vgslspecs.py
output_spec: Output layer definition:
O(2|1|0)(l|s|c)n output layer with n classes.
2 (heatmap) Output is a 2-d vector map of the input (possibly at
different scale).
1 (sequence) Output is a 1-d sequence of vector values.
0 (value) Output is a 0-d single vector value.
l uses a logistic non-linearity on the output, allowing multiple
hot elements in any output vector value.
s uses a softmax non-linearity, with one-hot output in each value.
c uses a softmax with CTC. Can only be used with s (sequence).
NOTE Only O1s and O1c are currently supported.
optimizer_type: One of 'GradientDescent', 'AdaGrad', 'Momentum', 'Adam'.
num_preprocess_threads: Number of threads to use for image processing.
reader: Function that returns an actual reader to read Examples from input
files. If None, uses tf.TFRecordReader().
"""
self.global_step = tf.Variable(0, name='global_step', trainable=False)
shape = _ParseInputSpec(input_spec)
out_dims, out_func, num_classes = _ParseOutputSpec(output_spec)
self.using_ctc = out_func == 'c'
images, heights, widths, labels, sparse, _ = vgsl_input.ImageInput(
input_pattern, num_preprocess_threads, shape, self.using_ctc, reader)
self.labels = labels
self.sparse_labels = sparse
self.layers = vgslspecs.VGSLSpecs(widths, heights, self.mode == 'train')
last_layer = self.layers.Build(images, model_spec)
self._AddOutputs(last_layer, out_dims, out_func, num_classes)
if self.mode == 'train':
self._AddOptimizer(optimizer_type)
# For saving the model across training and evaluation
self.saver = tf.train.Saver()