本文整理汇总了Python中validator.Validator方法的典型用法代码示例。如果您正苦于以下问题:Python validator.Validator方法的具体用法?Python validator.Validator怎么用?Python validator.Validator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类validator
的用法示例。
在下文中一共展示了validator.Validator方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def main():
args = get_args()
nn.set_default_context(get_extension_context(
args.extension, device_id=args.device_id))
from atari_utils import make_atari_deepmind
env = make_atari_deepmind(args.gym_env, valid=True)
print('Observation:', env.observation_space)
print('Action:', env.action_space)
obs_sampler = ObsSampler(args.num_frames)
val_replay_memory = ReplayMemory(env.observation_space.shape,
env.action_space.shape, max_memory=args.num_frames)
# for one file
explorer = GreedyExplorer(
env.action_space.n, use_nnp=True, nnp_file=args.nnp, name='qnet')
validator = Validator(env, val_replay_memory, explorer, obs_sampler,
num_episodes=30, clip_episode_step=True,
render=not args.no_render)
mean_reward = validator.step()
with open(os.path.join(args.log_path, 'mean_reward.txt'), 'a') as f:
print("{} {}".format(args.gym_env, str(mean_reward)), file=f)
示例2: __init__
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def __init__(self, config, loglevel=logging.INFO):
logging.basicConfig(level=loglevel)
log.LOGLEVEL = loglevel
self.config = config['foreman']
self.loglevel = loglevel
self.validator = Validator()
示例3: main
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def main():
args = get_args()
nn.set_default_context(get_extension_context(
args.extension, device_id=args.device_id))
if args.nnp is None:
local_nnp_dir = os.path.join("asset", args.gym_env)
local_nnp_file = os.path.join(local_nnp_dir, "qnet.nnp")
if not find_local_nnp(args.gym_env):
logger.info("Downloading nnp data since you didn't specify...")
nnp_uri = os.path.join("https://nnabla.org/pretrained-models/nnp_models/examples/dqn",
args.gym_env,
"qnet.nnp")
if not os.path.exists(local_nnp_dir):
os.mkdir(local_nnp_dir)
download(nnp_uri, output_file=local_nnp_file, open_file=False)
logger.info("Download done!")
args.nnp = local_nnp_file
from atari_utils import make_atari_deepmind
env = make_atari_deepmind(args.gym_env, valid=False)
print('Observation:', env.observation_space)
print('Action:', env.action_space)
obs_sampler = ObsSampler(args.num_frames)
val_replay_memory = ReplayMemory(env.observation_space.shape,
env.action_space.shape,
max_memory=args.num_frames)
# just play greedily
explorer = GreedyExplorer(
env.action_space.n, use_nnp=True, nnp_file=args.nnp, name='qnet')
validator = Validator(env, val_replay_memory, explorer, obs_sampler,
num_episodes=1, render=not args.no_render)
while True:
validator.step()
示例4: validate
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def validate():
"""
Run ESLint validation using settings from the current TextMate
environment. Return a list of issues.
"""
eslint_command = os.environ.get('TM_JAVASCRIPT_ESLINT_ESLINT', 'eslint')
the_validator = validator.Validator(eslint_command)
filename = os.environ.get('TM_FILEPATH', None)
input_is_html = not os.environ['TM_SCOPE'].startswith('source.js')
line_offset = int(os.environ.get('TM_INPUT_START_LINE', 1)) - 1
cwd = get_cwd()
try:
issues = the_validator.run(
filename=filename,
input_is_html=input_is_html,
line_offset=line_offset,
cwd=cwd
)
except validator.ValidateError as err:
context = {
'BASE_PATH': BASE_PATH,
'timestamp': time.strftime('%c'),
'errorMessage': err.message,
}
if err.path:
context['searchPath'] = err.path
html = ASHES_ENV.render('error_eslint_path.html', context)
else:
html = ASHES_ENV.render('error_eslint_other.html', context)
print(html)
sys.exit()
return issues
示例5: fix
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def fix():
""" Run the eslint --fix command against the current file. """
if 'TM_FILEPATH' not in os.environ:
# ignore if file is not saved
return
if not os.environ['TM_SCOPE'].startswith('source.js'):
# refuse to run against HTML-embedded JavaScript
return
eslint_command = os.environ.get('TM_JAVASCRIPT_ESLINT_ESLINT', 'eslint')
the_validator = validator.Validator(eslint_command)
filename = os.environ['TM_FILEPATH']
cwd = get_cwd()
try:
the_validator.fix(filename, cwd)
except validator.ValidateError as err:
context = {
'BASE_PATH': BASE_PATH,
'timestamp': time.strftime('%c'),
'errorMessage': err.message,
}
if err.path:
context['searchPath'] = err.path
html = ASHES_ENV.render('error_eslint_path.html', context)
else:
html = ASHES_ENV.render('error_eslint_other.html', context)
print(html)
sys.exit()
mate = os.environ['TM_MATE']
subprocess.call([mate, '--clear-mark=warning', filename])
示例6: main
# 需要导入模块: import validator [as 别名]
# 或者: from validator import Validator [as 别名]
def main():
args = get_args()
nn.set_default_context(get_extension_context(
args.extension, device_id=args.device_id))
if args.log_path:
output_path = OutputPath(args.log_path)
else:
output_path = OutputPath()
monitor = Monitor(output_path.path)
tbw = SummaryWriter(output_path.path)
# Create an atari env.
from atari_utils import make_atari_deepmind
env = make_atari_deepmind(args.gym_env, valid=False)
env_val = make_atari_deepmind(args.gym_env, valid=True)
print('Observation:', env.observation_space)
print('Action:', env.action_space)
# 10000 * 4 frames
val_replay_memory = ReplayMemory(
env.observation_space.shape, env.action_space.shape, max_memory=args.num_frames)
replay_memory = ReplayMemory(
env.observation_space.shape, env.action_space.shape, max_memory=40000)
learner = QLearner(q_cnn, env.action_space.n, sync_freq=1000, save_freq=250000,
gamma=0.99, learning_rate=1e-4, name_q='q', save_path=output_path)
explorer = LinearDecayEGreedyExplorer(
env.action_space.n, eps_start=1.0, eps_end=0.01, eps_steps=1e6,
q_builder=q_cnn, name='q')
sampler = Sampler(args.num_frames)
obs_sampler = ObsSampler(args.num_frames)
validator = Validator(env_val, val_replay_memory, explorer, obs_sampler,
num_episodes=args.num_val_episodes, num_eval_steps=args.num_eval_steps,
render=args.render_val, monitor=monitor, tbw=tbw)
trainer_with_validator = Trainer(env, replay_memory, learner, sampler, explorer, obs_sampler, inter_eval_steps=args.inter_eval_steps,
num_episodes=args.num_episodes, train_start=10000, batch_size=32,
render=args.render_train, validator=validator, monitor=monitor, tbw=tbw)
for e in range(args.num_epochs):
trainer_with_validator.step()