本文整理汇总了Python中utils.utils.utils方法的典型用法代码示例。如果您正苦于以下问题:Python utils.utils方法的具体用法?Python utils.utils怎么用?Python utils.utils使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.utils
的用法示例。
在下文中一共展示了utils.utils方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def run(self):
self.set_logger()
# Initialize progress bar
bar = utils.set_progress_bar(self.total_iters)
for cycle_num in range(int(self.total_iters / self.iters)):
self.model.train()
self.cycle(bar, cycle_num)
with torch.no_grad():
self.run_evaluation_cycle()
self.log_losses(self.opt, self.losses)
self.update_top_score(self.opt)
self.save_model(self.get_tracked_score())
self.stop_logger()
示例2: load_data
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def load_data(self, path):
if ".pickle" in path:
print("Loading data from: {}".format(path))
data_utils.load_existing_data_loader(self, path)
return True
for split in self.data:
file_name = "v4_atomic_{}.csv".format(map_name(split))
df = pandas.read_csv("{}/{}".format(path, file_name), index_col=0)
df.iloc[:, :9] = df.iloc[:, :9].apply(
lambda col: col.apply(json.loads))
for cat in self.categories:
attr = df[cat]
self.data[split]["total"] += utils.zipped_flatten(zip(
attr.index, ["<{}>".format(cat)] * len(attr), attr.values))
if do_take_partial_dataset(self.opt.data):
self.data["train"]["total"] = select_partial_dataset(
self.opt.data, self.data["train"]["total"])
return False
示例3: handle_underscores
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def handle_underscores(suffix, text_encoder, prefix=False):
encoder = text_encoder.encoder
if prefix:
tok = "___"
else:
tok = find_underscore_length(suffix)
suffix_parts = [i.strip() for i in suffix.split("{}".format(tok))]
to_flatten = []
for i, part in enumerate(suffix_parts):
if part:
to_flatten.append(text_encoder.encode([part], verbose=False)[0])
if i != len(suffix_parts) - 1 and suffix_parts[i+1]:
to_flatten.append([encoder["<blank>"]])
else:
to_flatten.append([encoder["<blank>"]])
final_suffix = utils.flatten(to_flatten)
return final_suffix
示例4: dataloader_create
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def dataloader_create(self, args):
from torch.utils.data import DataLoader
from myDatasets_stereo import dataset_stereo_by_name as dataset_stereo
args.mode = args.mode.lower()
if args.mode == 'test' or args.mode == 'submit':
# dataloader
transform=myTransforms.Stereo_eval()
dataset = dataset_stereo(names_dataset=args.dataset, root=args.root, Train=False, transform=transform)
self.dataloader_val = DataLoader(dataset, batch_size=args.batchsize, shuffle=False, num_workers=4, drop_last=False)
msg = "Val dataset: %s " % (args.dataset)
logging.info(msg)
else:
# dataloader
transform=myTransforms.Stereo_Spatial(size_crop=[768, 384], scale_delt=0, shift_max=32)
dataset = dataset_stereo(names_dataset=args.dataset, root=args.root, Train=True, transform=transform)
self.dataloader_train = DataLoader(dataset, batch_size=args.batchsize, shuffle=True, num_workers=4, drop_last=False)
transform=myTransforms.Stereo_ToTensor()
dataset_val = dataset_stereo(names_dataset=args.dataset_val, root=args.root, Train=False, transform=transform)
self.dataloader_val = DataLoader(dataset_val, batch_size=args.batchsize, shuffle=False, num_workers=4, drop_last=False)
msg = "Train dataset: %s , Val dataset: %s " % (args.dataset, args.dataset_val)
logging.info(msg)
示例5: dataloader_create
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def dataloader_create(self, args):
from torch.utils.data import DataLoader
from myDatasets_stereo import dataset_stereo_by_name as dataset_stereo
import myTransforms
args.mode = args.mode.lower()
if args.mode == 'test' or args.mode == 'submit':
# dataloader
transform=myTransforms.Stereo_eval()
dataset = dataset_stereo(names_dataset=args.dataset, root=args.root, Train=False, transform=transform)
self.dataloader_val = DataLoader(dataset, batch_size=args.batchsize, shuffle=False, num_workers=4, drop_last=False)
msg = "%s dataset: %s , model name: %s " % (args.mode, args.dataset, args.net)
logging.info(msg)
else:
# dataloader
transform = myTransforms.Stereo_train(size_crop=[768, 384], scale_delt=0, shift_max=32)
dataset = dataset_stereo(names_dataset=args.dataset, root=args.root, Train=True, transform=transform)
self.dataloader_train = DataLoader(dataset, batch_size=args.batchsize, shuffle=True, num_workers=4, drop_last=False)
transform=myTransforms.Stereo_eval()
dataset_val = dataset_stereo(names_dataset=args.dataset_val, root=args.root, Train=False, transform=transform)
self.dataloader_val = DataLoader(dataset_val, batch_size=args.batchsize, shuffle=False, num_workers=4, drop_last=False)
msg = "Train dataset: %s , val dataset: %s " % (args.dataset, args.dataset_val)
logging.info(msg)
示例6: clean_str
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
# FIXME: Move to utils, just like we're doing with the mnist module
示例7: set_logger
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def set_logger(self):
if cfg.toy:
self.logger = SummaryWriter(utils.make_name(
self.opt, prefix="garbage/logs/", eval_=True, do_epoch=False))
else:
self.logger = SummaryWriter(utils.make_name(
self.opt, prefix="logs/", eval_=True, do_epoch=False))
print("Logging Tensorboard Files at: {}".format(self.logger.logdir))
示例8: epoch
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def epoch(self):
nums = self.reset_losses()
# Initialize progress bar
bar = utils.initialize_progress_bar(
self.data_loader.sequences["train"])
reset = False
while not reset:
loss, nums, reset = self.do_forward_pass(nums)
self.do_backward_pass(loss)
self.update_parameters()
bar.update(self.opt.train.dynamic.bs)
self.count += 1
for loss_name in self.losses["train"]:
self.logger.add_scalar(
"train/{}".format(loss_name),
loss.item() / self.opt.train.dynamic.bs,
self.count)
if cfg.toy and self.counter(nums) > 300:
break
with torch.no_grad():
self.run_evaluation_cycle()
self.log_losses(self.opt, self.losses)
self.update_top_score(self.opt)
self.save_model(self.get_tracked_score())
self.data_loader.reset_offsets("train")
示例9: clip_gradients
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def clip_gradients(self):
if self.opt.train.static.clip:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.opt.train.static.clip)
示例10: save_step
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def save_step(model, vocab, optimizer, opt, length, lrs):
if cfg.test_save:
name = "{}.pickle".format(utils.make_name(
opt, prefix="garbage/models/", is_dir=False, eval_=True))
else:
name = "{}.pickle".format(utils.make_name(
opt, prefix="models/", is_dir=False, eval_=True))
save_checkpoint({
"epoch": length, "state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(), "opt": opt,
"vocab": vocab, "epoch_learning_rates": lrs},
name)
示例11: load_atomic_data
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def load_atomic_data(opt):
# Hacky workaround, you may have to change this
# if your models use different pad lengths for e1, e2, r
if opt.data.get("maxe1", None) is None:
opt.data.maxe1 = 17
opt.data.maxe2 = 35
opt.data.maxr = 1
path = "data/atomic/processed/generation/{}.pickle".format(
utils.make_name_string(opt.data))
data_loader = data.make_data_loader(opt, opt.data.categories)
loaded = data_loader.load_data(path)
return data_loader
示例12: save_checkpoint
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def save_checkpoint(self, epoch, best_prec, is_best):
state = {
'epoch': epoch,
'best_prec': best_prec,
'state_dict': self.model.state_dict(),
'optim' : self.optim.state_dict(),
}
utils.save_checkpoint(state, is_best, dirpath=self.dirpath, filename='model_checkpoint.pkl')
if(is_best):
path_save = os.path.join(self.dirpath, 'weight_best.pkl')
torch.save({'state_dict': self.model.state_dict()}, path_save)
示例13: load_checkpoint
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def load_checkpoint(self, best=False):
state = utils.load_checkpoint(self.dirpath, best)
if state is not None:
msg = 'load checkpoint successly: %s \n' % self.dirpath
logging.info(msg)
self.epoch = state['epoch'] + 1
self.best_prec = state['best_prec']
self.model.load_state_dict(state['state_dict'])
self.optim.load_state_dict(state['optim'])
示例14: detect_and_draw
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def detect_and_draw(model, bev_maps, Tensor, is_front=True):
# If back side bev, flip around vertical axis
if not is_front:
bev_maps = torch.flip(bev_maps, [2, 3])
imgs = Variable(bev_maps.type(Tensor))
# Get Detections
img_detections = []
with torch.no_grad():
detections = model(imgs)
detections = utils.non_max_suppression_rotated_bbox(detections, opt.conf_thres, opt.nms_thres)
img_detections.extend(detections)
# Only supports single batch
display_bev = np.zeros((cnf.BEV_WIDTH, cnf.BEV_WIDTH, 3))
bev_map = bev_maps[0].numpy()
display_bev[:, :, 2] = bev_map[0, :, :] # r_map
display_bev[:, :, 1] = bev_map[1, :, :] # g_map
display_bev[:, :, 0] = bev_map[2, :, :] # b_map
display_bev *= 255
display_bev = display_bev.astype(np.uint8)
for detections in img_detections:
if detections is None:
continue
# Rescale boxes to original image
detections = utils.rescale_boxes(detections, opt.img_size, display_bev.shape[:2])
for x, y, w, l, im, re, conf, cls_conf, cls_pred in detections:
yaw = np.arctan2(im, re)
# Draw rotated box
bev_utils.drawRotatedBox(display_bev, x, y, w, l, yaw, cnf.colors[int(cls_pred)])
return display_bev, img_detections
示例15: save_img
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import utils [as 别名]
def save_img(self, fig, name):
utils.save_img(fig, self.model_name, name, self.result_dir)
return