本文整理汇总了Python中utils.utils.AverageMeter方法的典型用法代码示例。如果您正苦于以下问题:Python utils.AverageMeter方法的具体用法?Python utils.AverageMeter怎么用?Python utils.AverageMeter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.utils
的用法示例。
在下文中一共展示了utils.AverageMeter方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: update_states
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def update_states(self, states, batch_size=1):
if len(self.states) == 0:
state_names = states.keys()
self.states = OrderedDict(
[(key, 0) for key in state_names]
)
self.average_meters = OrderedDict(
[(key, AverageMeter())
for key in state_names]
)
self.states.update(states)
for key, meter in self.average_meters.items():
meter.update(self.states[key], batch_size)
示例2: test
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def test(cfg):
Dataset = dataset_factory[cfg.SAMPLE_METHOD]
Logger(cfg)
Detector = detector_factory[cfg.TEST.TASK]
dataset = Dataset(cfg, 'val')
detector = Detector(cfg)
results = {}
num_iters = len(dataset)
bar = Bar('{}'.format(cfg.EXP_ID), max=num_iters)
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
for ind in range(num_iters):
img_id = dataset.images[ind]
img_info = dataset.coco.loadImgs(ids=[img_id])[0]
img_path = os.path.join(dataset.img_dir, img_info['file_name'])
#img_path = '/home/tensorboy/data/coco/images/val2017/000000004134.jpg'
ret = detector.run(img_path)
results[img_id] = ret['results']
Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
Bar.suffix = Bar.suffix + '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
bar.next()
bar.finish()
dataset.run_eval(results, cfg.OUTPUT_DIR)
示例3: validate
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def validate(self, loader, model, criterion, epoch, args):
timer = Timer()
losses = AverageMeter()
top1 = AverageMeter()
wtop1 = AverageMeter()
alloutputs = []
metrics = {}
# switch to evaluate mode
model.eval()
def part(x):
return itertools.islice(x, int(len(x) * args.val_size))
for i, x in enumerate(part(loader)):
inputs, target, meta = parse(x)
output, loss, weights = forward(inputs, target, model, criterion, meta['id'], train=False)
prec1 = triplet_accuracy(output, target)
wprec1 = triplet_accuracy(output, target, weights)
losses.update(loss.data[0], inputs[0].size(0))
top1.update(prec1, inputs[0].size(0))
wtop1.update(wprec1, inputs[0].size(0))
alloutputs.extend(zip([(x.data[0], y.data[0]) for x, y in zip(*output)], target, weights))
timer.tic()
if i % args.print_freq == 0:
print('[{name}] Test [{epoch}]: [{0}/{1} ({2})]\t'
'Time {timer.val:.3f} ({timer.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'WAcc@1 {wtop1.val:.3f} ({wtop1.avg:.3f})\t'.format(
i, int(len(loader) * args.val_size), len(loader), name=args.name,
timer=timer, loss=losses, top1=top1, epoch=epoch, wtop1=wtop1))
metrics.update(triplet_allk(*zip(*alloutputs)))
metrics.update({'top1val': top1.avg, 'wtop1val': wtop1.avg})
print(' * Acc@1 {top1val:.3f} \t WAcc@1 {wtop1val:.3f}'
'\n topk1: {topk1:.3f} \t topk2: {topk2:.3f} \t '
'topk5: {topk5:.3f} \t topk10: {topk10:.3f} \t topk50: {topk50:.3f}'
.format(**metrics))
return metrics
示例4: prefetch_test
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def prefetch_test(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
Dataset = dataset_factory[opt.dataset]
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
print(opt)
Logger(opt)
Detector = detector_factory[opt.task]
split = 'val' if not opt.trainval else 'test'
dataset = Dataset(opt, split)
detector = Detector(opt)
data_loader = torch.utils.data.DataLoader(
PrefetchDataset(opt, dataset, detector.pre_process),
batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
results = {}
num_iters = len(dataset)
bar = Bar('{}'.format(opt.exp_id), max=num_iters)
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
for ind, (img_id, pre_processed_images) in enumerate(data_loader):
ret = detector.run(pre_processed_images)
results[img_id.numpy().astype(np.int32)[0]] = ret['results']
Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format(
t, tm = avg_time_stats[t])
bar.next()
bar.finish()
dataset.run_eval(results, opt.save_dir)
示例5: test
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def test(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
Dataset = dataset_factory[opt.dataset]
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
print(opt)
Logger(opt)
Detector = detector_factory[opt.task]
split = 'val' if not opt.trainval else 'test'
dataset = Dataset(opt, split)
detector = Detector(opt)
results = {}
num_iters = len(dataset)
bar = Bar('{}'.format(opt.exp_id), max=num_iters)
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
for ind in range(num_iters):
img_id = dataset.images[ind]
img_info = dataset.coco.loadImgs(ids=[img_id])[0]
img_path = os.path.join(dataset.img_dir, img_info['file_name'])
if opt.task == 'ddd':
ret = detector.run(img_path, img_info['calib'])
else:
ret = detector.run(img_path)
results[img_id] = ret['results']
Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
Bar.suffix = Bar.suffix + '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
bar.next()
bar.finish()
dataset.run_eval(results, opt.save_dir)
示例6: __init__
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def __init__(self, state_names=[]):
self.states = OrderedDict(
[(key, 0) for key in state_names]
)
self.average_meters = OrderedDict(
[(key, AverageMeter())
for key in state_names]
)
self.state_names = state_names
示例7: step
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def step(split, epoch, opt, dataLoader, model, criterion, optimizer = None):
if split == 'train':
model.train()
else:
model.eval()
Loss, Acc = AverageMeter(), AverageMeter()
preds = []
nIters = len(dataLoader)
bar = Bar('{}'.format(opt.expID), max=nIters)
for i, (input, target, meta) in enumerate(dataLoader):
input_var = torch.autograd.Variable(input).float().cuda()
target_var = torch.autograd.Variable(target).float().cuda()
# model = torch.nn.DataParallel(model,device_ids=[0,1,2])
output = model(input_var)
# output = torch.nn.parallel.data_parallel(model,input_var,device_ids=[0,1,2,3,4,5])
if opt.DEBUG >= 2:
gt = getPreds(target.cuda().numpy()) * 4
pred = getPreds((output[opt.nStack - 1].data).cuda().numpy()) * 4
debugger = Debugger()
img = (input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8).copy()
debugger.addImg(img)
debugger.addPoint2D(pred[0], (255, 0, 0))
debugger.addPoint2D(gt[0], (0, 0, 255))
debugger.showAllImg(pause = True)
loss = criterion(output[0], target_var)
for k in range(1, opt.nStack):
loss += criterion(output[k], target_var)
# Warning.after pytorch0.5.0 -> Tensor.item()代替loss.data[0]
Loss.update(loss.data[0], input.size(0))
Acc.update(Accuracy((output[opt.nStack - 1].data).cpu().numpy(), (target_var.data).cpu().numpy()))
if split == 'train':
# train
optimizer.zero_grad()
loss.backward()
optimizer.step()
else:
input_ = input.cpu().numpy()
input_[0] = Flip(input_[0]).copy()
inputFlip_var = torch.autograd.Variable(torch.from_numpy(input_).view(1, input_.shape[1], ref.inputRes, ref.inputRes)).float().cuda()
outputFlip = model(inputFlip_var)
outputFlip = ShuffleLR(Flip((outputFlip[opt.nStack - 1].data).cpu().numpy()[0])).reshape(1, ref.nJoints, ref.outputRes, ref.outputRes)
output_ = ((output[opt.nStack - 1].data).cpu().numpy() + outputFlip) / 2
preds.append(finalPreds(output_, meta['center'], meta['scale'], meta['rotate'])[0])
Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'.format(epoch, i, nIters, total=bar.elapsed_td, eta=bar.eta_td, loss=Loss, Acc=Acc, split = split)
bar.next()
bar.finish()
return {'Loss': Loss.avg, 'Acc': Acc.avg}, preds
示例8: train
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def train(self, loader, model, criterion, optimizer, epoch, args):
adjust_learning_rate(args.lr, args.lr_decay_rate, optimizer, epoch)
timer = Timer()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
wtop1 = AverageMeter()
metrics = {}
# switch to train mode
model.train()
optimizer.zero_grad()
def part(x):
return itertools.islice(x, int(len(x) * args.train_size))
for i, x in enumerate(part(loader)):
inputs, target, meta = parse(x)
data_time.update(timer.thetime() - timer.end)
output, loss, weights = forward(inputs, target, model, criterion, meta['id'])
prec1 = triplet_accuracy(output, target)
wprec1 = triplet_accuracy(output, target, weights)
losses.update(loss.data[0], inputs[0].size(0))
top1.update(prec1, inputs[0].size(0))
wtop1.update(wprec1, inputs[0].size(0))
loss.backward()
if i % args.accum_grad == args.accum_grad - 1:
print('updating parameters')
optimizer.step()
optimizer.zero_grad()
timer.tic()
if i % args.print_freq == 0:
print('[{name}] Epoch: [{0}][{1}/{2}({3})]\t'
'Time {timer.val:.3f} ({timer.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'WAcc@1 {wtop1.val:.3f} ({wtop1.avg:.3f})\t'.format(
epoch, i, int(len(loader) * args.train_size), len(loader), name=args.name,
timer=timer, data_time=data_time, loss=losses, top1=top1, wtop1=wtop1))
metrics.update({'top1': top1.avg, 'wtop1': wtop1.avg})
return metrics
示例9: _valid_epoch
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def _valid_epoch(self):
valid_loss = AverageMeter()
valid_probs = []
for step, batch in enumerate(self.valid_loader):
self.model.eval()
batch = tuple(t.to(self.device) for t in batch)
batch_size = batch[1].size(0)
with torch.no_grad():
op = batch[0]
inputs = {
"input_ids_a": batch[1],
"token_type_ids_a": batch[2],
"attention_mask_a": batch[3],
"input_ids_b": batch[4],
"token_type_ids_b": batch[5],
"attention_mask_b": batch[6],
"input_ids_c": batch[7],
"token_type_ids_c": batch[8],
"attention_mask_c": batch[9],
}
if self.fts_flag:
inputs.update(
{"x_a": batch[10], "x_b": batch[11], "x_c": batch[12]}
)
anchor, positive, negative = self.model(**inputs)
# loss = self.criterion(anchor, positive, negative)
loss = self.criterion(op.float(), anchor, positive, negative)
valid_loss.update(loss.item(), batch_size)
anchor = anchor.to("cpu").numpy()
positive = positive.to("cpu").numpy()
negative = negative.to("cpu").numpy()
pos_dist = np.sqrt(
np.sum(np.square(anchor - positive), axis=-1, keepdims=True)
)
neg_dist = np.sqrt(
np.sum(np.square(anchor - negative), axis=-1, keepdims=True)
)
probs = pos_dist - neg_dist
# probs = (op.to("cpu").numpy() * (pos_dist - neg_dist)).diagonal()
valid_probs.append(probs)
valid_probs = np.concatenate(valid_probs)
valid_log = {"val_loss": valid_loss.avg, "val_probs": valid_probs}
return valid_log
示例10: eval
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def eval(self):
test_loss = AverageMeter()
test_probs = []
for step, batch in enumerate(self.test_loader):
self.model.eval()
batch = tuple(t.to(self.device) for t in batch)
batch_size = batch[1].size(0)
with torch.no_grad():
op = batch[0]
inputs = {
"input_ids_a": batch[1],
"token_type_ids_a": batch[2],
"attention_mask_a": batch[3],
"input_ids_b": batch[4],
"token_type_ids_b": batch[5],
"attention_mask_b": batch[6],
"input_ids_c": batch[7],
"token_type_ids_c": batch[8],
"attention_mask_c": batch[9],
}
if self.fts_flag:
inputs.update(
{"x_a": batch[10], "x_b": batch[11], "x_c": batch[12]}
)
anchor, positive, negative = self.model(**inputs)
loss = self.criterion(op.float(), anchor, positive, negative)
test_loss.update(loss.item(), batch_size)
anchor = anchor.to("cpu").numpy()
positive = positive.to("cpu").numpy()
negative = negative.to("cpu").numpy()
pos_dist = np.sqrt(
np.sum(np.square(anchor - positive), axis=-1, keepdims=True)
)
neg_dist = np.sqrt(
np.sum(np.square(anchor - negative), axis=-1, keepdims=True)
)
probs = pos_dist - neg_dist
test_probs.append(probs)
test_probs = np.concatenate(test_probs)
correct = test_probs[np.where(test_probs <= 0)].shape[0]
self.logger.info(
f"min: {np.min(test_probs):.4f} "
f"max: {np.max(test_probs):.4f} "
f"avg: {np.average(test_probs):.4f} "
f"loss: {test_loss.avg:.4f} "
f"acc: {correct}, {float(correct / len(test_probs)):.4f}"
)
示例11: run_train_epoch
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def run_train_epoch(model, optimizer, criterion, train_dataloader, epoch, args):
batch_time = utils.AverageMeter('Time', ':6.3f')
#data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
grad_norm = utils.AverageMeter('grad_norm', ':.4e')
progress = utils.ProgressMeter(len(train_dataloader), batch_time, losses, grad_norm,
prefix="Epoch: [{}]".format(epoch))
end = time.time()
# trainloader is an iterator. This line extract one minibatch at one time
for i, data in enumerate(train_dataloader, 0):
feat = data["x"]
label = data["y"]
x = feat.to(th.float32)
y = label.unsqueeze(2).long()
if th.cuda.is_available():
x = x.cuda()
y = y.cuda()
prediction = model(x)
loss = criterion(prediction.view(-1, prediction.shape[2]), y.view(-1))
optimizer.zero_grad()
loss.backward()
# Gradient Clipping
norm = nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
grad_norm.update(norm)
# update loss
losses.update(loss.item(), x.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
if i % args.print_freq == 0:
# if not args.hvd or hvd.rank() == 0:
progress.print(i)
示例12: run_epoch
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def run_epoch(self, phase, epoch, data_loader):
model_with_loss = self.model_with_loss
if phase == 'train':
model_with_loss.train()
else:
if len(self.opt.gpus) > 1:
model_with_loss = self.model_with_loss.module
model_with_loss.eval()
torch.cuda.empty_cache()
opt = self.opt
results = {}
data_time, batch_time = AverageMeter(), AverageMeter()
avg_loss_stats = {l: AverageMeter() for l in self.loss_stats}
num_iters = len(data_loader) if opt.num_iters < 0 else opt.num_iters
bar = Bar('{}/{}'.format(opt.task, opt.exp_id), max=num_iters)
end = time.time()
for iter_id, batch in enumerate(data_loader):
if iter_id >= num_iters:
break
data_time.update(time.time() - end)
for k in batch:
if k != 'meta':
batch[k] = batch[k].to(device=opt.device, non_blocking=True)
output, loss, loss_stats = model_with_loss(batch)
loss = loss.mean()
if phase == 'train':
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
Bar.suffix = '{phase}: [{0}][{1}/{2}]|Tot: {total:} |ETA: {eta:} '.format(
epoch, iter_id, num_iters, phase=phase,
total=bar.elapsed_td, eta=bar.eta_td)
for l in avg_loss_stats:
avg_loss_stats[l].update(
loss_stats[l].mean().item(), batch['input'].size(0))
Bar.suffix = Bar.suffix + '|{} {:.4f} '.format(l, avg_loss_stats[l].avg)
if not opt.hide_data_time:
Bar.suffix = Bar.suffix + '|Data {dt.val:.3f}s({dt.avg:.3f}s) ' \
'|Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time)
if opt.print_iter > 0:
if iter_id % opt.print_iter == 0:
print('{}/{}| {}'.format(opt.task, opt.exp_id, Bar.suffix))
else:
bar.next()
if opt.debug > 0:
self.debug(batch, output, iter_id)
if opt.test:
self.save_result(output, batch, results)
del output, loss, loss_stats
bar.finish()
ret = {k: v.avg for k, v in avg_loss_stats.items()}
ret['time'] = bar.elapsed_td.total_seconds() / 60.
return ret, results
示例13: validate
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def validate(data_loader, model, epoch, logger=None):
data_time_meter = AverageMeter()
batch_time_meter = AverageMeter()
model.eval()
tic = time.time()
loader_size = len(data_loader)
training_states = TrainingStates()
for i, (data_dicts) in enumerate(data_loader):
data_time_meter.update(time.time() - tic)
batch_size = data_dicts['point_cloud'].shape[0]
with torch.no_grad():
data_dicts_var = {key: value.cuda() for key, value in data_dicts.items()}
losses, metrics = model(data_dicts_var)
# mean for multi-gpu setting
losses_reduce = {key: value.detach().mean().item() for key, value in losses.items()}
metrics_reduce = {key: value.detach().mean().item() for key, value in metrics.items()}
training_states.update_states(dict(**losses_reduce, **metrics_reduce), batch_size)
batch_time_meter.update(time.time() - tic)
tic = time.time()
states = training_states.get_states(avg=True)
states_str = training_states.format_states(states)
output_str = 'Validation Epoch: {:03d} Time:{:.3f}/{:.3f} ' \
.format(epoch + 1, data_time_meter.val, batch_time_meter.val)
logging.info(output_str + states_str)
if logger is not None:
for tag, value in states.items():
logger.scalar_summary(tag, value, int(epoch))
return states['IoU_' + str(cfg.IOU_THRESH)]
示例14: step
# 需要导入模块: from utils import utils [as 别名]
# 或者: from utils.utils import AverageMeter [as 别名]
def step(args, split, epoch, loader, model, optimizer = None, M = None, f = None, tag = None):
losses, mpjpe, mpjpe_r = AverageMeter(), AverageMeter(), AverageMeter()
viewLosses, shapeLosses, supLosses = AverageMeter(), AverageMeter(), AverageMeter()
if split == 'train':
model.train()
else:
model.eval()
bar = Bar('{}'.format(ref.category), max=len(loader))
nViews = loader.dataset.nViews
for i, (input, target, meta) in enumerate(loader):
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = ShapeConsistencyCriterion(nViews, supWeight = 1, unSupWeight = args.shapeWeight, M = M)(output, target_var, torch.autograd.Variable(meta))
if split == 'test':
for j in range(input.numpy().shape[0]):
img = (input.numpy()[j] * 255).transpose(1, 2, 0).astype(np.uint8)
cv2.imwrite('{}/img_{}/{}.png'.format(args.save_path, tag, i * input.numpy().shape[0] + j), img)
gt = target.cpu().numpy()[j]
pred = (output.data).cpu().numpy()[j]
vis = meta.cpu().numpy()[j][5:]
for t in range(ref.J):
f.write('{} {} {} '.format(pred[t * 3], pred[t * 3 + 1], pred[t * 3 + 2]))
f.write('\n')
for t in range(ref.J):
f.write('{} {} {} '.format(gt[t, 0], gt[t, 1], gt[t, 2]))
f.write('\n')
if args.saveVis:
for t in range(ref.J):
f.write('{} 0 0 '.format(vis[t]))
f.write('\n')
mpjpe_this = accuracy(output.data, target, meta)
mpjpe_r_this = accuracy_dis(output.data, target, meta)
shapeLoss = shapeConsistency(output.data, meta, nViews, M, split = split)
losses.update(loss.data[0], input.size(0))
shapeLosses.update(shapeLoss, input.size(0))
mpjpe.update(mpjpe_this, input.size(0))
mpjpe_r.update(mpjpe_r_this, input.size(0))
if split == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
Bar.suffix = '{split:10}: [{0:2}][{1:3}/{2:3}] | Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | shapeLoss {shapeLoss.avg:.6f} | AE {mpjpe.avg:.6f} | ShapeDis {mpjpe_r.avg:.6f}'.format(epoch, i, len(loader), total=bar.elapsed_td, eta=bar.eta_td, loss=losses, mpjpe=mpjpe, split = split, shapeLoss = shapeLosses, mpjpe_r = mpjpe_r)
bar.next()
bar.finish()
return mpjpe.avg, losses.avg, shapeLosses.avg