当前位置: 首页>>代码示例>>Python>>正文


Python util.AverageMeter方法代码示例

本文整理汇总了Python中utils.util.AverageMeter方法的典型用法代码示例。如果您正苦于以下问题:Python util.AverageMeter方法的具体用法?Python util.AverageMeter怎么用?Python util.AverageMeter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils.util的用法示例。


在下文中一共展示了util.AverageMeter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    criterion=nn.CrossEntropyLoss().cuda(device)
    scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
    for epoch in range(args.epochs):
        scheduler.step()
        loss_record = AverageMeter()
        acc_record = AverageMeter()
        model.train()
        for batch_idx, (x, label, _) in enumerate(tqdm(train_loader)):
            x, label = x.to(device), label.to(device)
            output = model(x)
            loss = criterion(output, label) 
            acc = accuracy(output, label)
            acc_record.update(acc[0].item(), x.size(0))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
        test(model, eva_loader, args)
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:imagenet_classif.py

示例2: warmup_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.warmup_epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Warmup Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args)
    args.p_targets = target_distribution(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:19,代码来源:imagenet2cifar_DTC.py

示例3: Baseline_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        model.train()
        exp_lr_scheduler.step()
        for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args)
        if epoch % args.update_interval==0:
            print('updating target ...')
            args.p_targets = target_distribution(probs) 
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:imagenet2cifar_DTC.py

示例4: test

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def test(model, test_loader, args):
    model.eval()
    acc_record = AverageMeter()
    preds=np.array([])
    targets=np.array([])
    feats = np.zeros((len(test_loader.dataset), args.n_clusters))
    probs= np.zeros((len(test_loader.dataset), args.n_clusters))
    for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
        x, label = x.to(device), label.to(device)
        feat = model(x)
        prob = feat2prob(feat, model.center)
        _, pred = prob.max(1)
        targets=np.append(targets, label.cpu().numpy())
        preds=np.append(preds, pred.cpu().numpy())
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.cpu().detach().numpy()
        probs[idx, :] = prob.cpu().detach().numpy()
    acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = torch.from_numpy(probs)
    return acc, nmi, ari, probs 
开发者ID:k-han,项目名称:DTC,代码行数:23,代码来源:imagenet2cifar_DTC.py

示例5: train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def train(model, train_loader, args):
    optimizer = Adam(model.parameters(), lr=args.lr)
    exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
    criterion=nn.CrossEntropyLoss().cuda(device)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        acc_record = AverageMeter()
        model.train()
        exp_lr_scheduler.step()
        for batch_idx, (x, label, _) in enumerate(train_loader):
            x, target = x.to(device), label.to(device)
            optimizer.zero_grad()
            _, output= model(x)
            loss = criterion(output, target) 
            acc = accuracy(output, target)
            loss.backward()
            optimizer.step()
            acc_record.update(acc[0].item(), x.size(0))
            loss_record.update(loss.item(), x.size(0))
        print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
        test(model, eva_loader, args)
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:cifar100_classif.py

示例6: warmup_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.warmup_epochs):
        loss_record = AverageMeter()
        acc_record = AverageMeter()
        model.train()
        for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            output = model(x)
            prob = feat2prob(output, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs= test(model, eva_loader, args, epoch)
    args.p_targets = target_distribution(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:20,代码来源:imagenet_DTC.py

示例7: test

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def test(model, test_loader, args, epoch=0):
    model.eval()
    acc_record = AverageMeter()
    preds=np.array([])
    targets=np.array([])
    feats = np.zeros((len(test_loader.dataset), args.n_clusters))
    probs = np.zeros((len(test_loader.dataset), args.n_clusters))
    for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
        x, label = x.to(device), label.to(device)
        output = model(x)
        prob = feat2prob(output, model.center)
        _, pred = prob.max(1)
        targets=np.append(targets, label.cpu().numpy())
        preds=np.append(preds, pred.cpu().numpy())
        idx = idx.data.cpu().numpy()
        feats[idx, :] = output.cpu().detach().numpy()
        probs[idx, :]= prob.cpu().detach().numpy()
    acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    return acc, nmi, ari, torch.from_numpy(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:22,代码来源:imagenet_DTC.py

示例8: warmup_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.warmup_epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
            x  = x.to(device)
            feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args)
    args.p_targets = target_distribution(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:19,代码来源:svhn_DTC.py

示例9: train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def train(model, train_loader, args):
    optimizer = Adam(model.parameters(), lr=args.lr)
    exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
    criterion=nn.CrossEntropyLoss().cuda(device)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        acc_record = AverageMeter()
        model.train()
        exp_lr_scheduler.step()
        for batch_idx, (x, label, _) in enumerate(train_loader):
            x, target = x.to(device), label.to(device)
            optimizer.zero_grad()
            output= model(x)
            loss = criterion(output, target) 
            acc = accuracy(output, target)
            loss.backward()
            optimizer.step()
            acc_record.update(acc[0].item(), x.size(0))
            loss_record.update(loss.item(), x.size(0))
        print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
        test(model, eva_loader, args)
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:svhn_classif.py

示例10: train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def train(model, train_loader, args):
    print(model)
    optimizer = Adam(model.parameters(), lr=args.lr)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        acc_record = AverageMeter()
        model.train()
        for batch_idx, (x, _, label, _) in enumerate(train_loader):
            x = x.to(device)
            optimizer.zero_grad()
            _, feat = model(x)
            loss, acc = prototypical_loss(feat, label, n_support=5) 
            loss.backward()
            optimizer.step()
            acc_record.update(acc.item(), x.size(0))
            loss_record.update(loss.item(), x.size(0))

        print('Train Epoch: {} Avg Loss: {:.4f} \t Avg Acc: {:.4f}'.format(epoch, loss_record.avg, acc_record.avg))
        torch.save(model.state_dict(), args.model_dir)
        test(model, eva_loader, args)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:23,代码来源:omniglot_proto.py

示例11: warmup_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.warmup_epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args)
    args.p_targets = target_distribution(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:19,代码来源:cifar10_DTC.py

示例12: Baseline_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args)
        if epoch % args.update_interval ==0:
            print('updating target ...')
            args.p_targets = target_distribution(probs) 
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:23,代码来源:cifar10_DTC.py

示例13: warmup_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
    for epoch in range(args.warmup_epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            _, feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args, epoch)
    args.p_targets = target_distribution(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:19,代码来源:cifar100_DTC.py

示例14: Baseline_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
    optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        model.train()
        exp_lr_scheduler.step()
        for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
            x = x.to(device)
            _, feat = model(x)
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            loss_record.update(loss.item(), x.size(0))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eva_loader, args, epoch)

        if epoch % args.update_interval==0:
            print('updating target ...')
            args.p_targets = target_distribution(probs) 
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:26,代码来源:cifar100_DTC.py

示例15: Baseline_train

# 需要导入模块: from utils import util [as 别名]
# 或者: from utils.util import AverageMeter [as 别名]
def Baseline_train(model, alphabetStr, train_loader, eval_loader, args):
    optimizer = Adam(model.parameters(), lr=args.lr)
    for epoch in range(args.epochs):
        loss_record = AverageMeter()
        model.train()
        for batch_idx, (x, g_x, _, idx) in enumerate(train_loader):
            _, feat = model(x.to(device))
            prob = feat2prob(feat, model.center)
            loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            loss_record.update(loss.item(), x.size(0))
        print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
        _, _, _, probs = test(model, eval_loader, args)

        if epoch % args.update_interval==0:
            args.p_targets= target_distribution(probs) 
    torch.save(model.state_dict(), args.model_dir)
    print("model saved to {}.".format(args.model_dir)) 
开发者ID:k-han,项目名称:DTC,代码行数:22,代码来源:omniglot_DTC.py


注:本文中的utils.util.AverageMeter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。