本文整理汇总了Python中utils.train方法的典型用法代码示例。如果您正苦于以下问题:Python utils.train方法的具体用法?Python utils.train怎么用?Python utils.train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_fine_tuning
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=4):
train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'train'), transform=train_augs), batch_size, shuffle=True)
test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'test'), transform=test_augs), batch_size)
loss = torch.nn.CrossEntropyLoss()
utils.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)
示例2: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
model_dir = utils.get_model_dir(config)
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
mapper = [(inflection.underscore(name), member()) for name, member in inspect.getmembers(importlib.machinery.SourceFileLoader('', __file__).load_module()) if inspect.isclass(member)]
path = os.path.join(model_dir, os.path.basename(os.path.splitext(__file__)[0])) + '.xlsx'
with xlsxwriter.Workbook(path, {'strings_to_urls': False, 'nan_inf_to_errors': True}) as workbook:
worksheet = workbook.add_worksheet(args.worksheet)
for j, (key, m) in enumerate(mapper):
worksheet.write(0, j, key)
for i, (name, variable) in enumerate(state_dict.items()):
value = m(name, variable)
worksheet.write(1 + i, j, value)
if hasattr(m, 'format'):
m.format(workbook, worksheet, i, j)
worksheet.autofilter(0, 0, i, len(mapper) - 1)
worksheet.freeze_panes(1, 0)
logging.info(path)
示例3: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def __init__(self, env):
super(SummaryWorker, self).__init__()
self.env = env
self.config = env.config
self.queue = multiprocessing.Queue()
try:
self.timer_scalar = utils.train.Timer(env.config.getfloat('summary', 'scalar'))
except configparser.NoOptionError:
self.timer_scalar = lambda: False
try:
self.timer_image = utils.train.Timer(env.config.getfloat('summary', 'image'))
except configparser.NoOptionError:
self.timer_image = lambda: False
try:
self.timer_histogram = utils.train.Timer(env.config.getfloat('summary', 'histogram'))
except configparser.NoOptionError:
self.timer_histogram = lambda: False
with open(os.path.expanduser(os.path.expandvars(env.config.get('summary_histogram', 'parameters'))), 'r') as f:
self.histogram_parameters = utils.RegexList([line.rstrip() for line in f])
self.draw_bbox = utils.visualize.DrawBBox(env.category)
self.draw_feature = utils.visualize.DrawFeature()
示例4: get_loader
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def get_loader(self):
paths = [os.path.join(self.cache_dir, phase + '.pkl') for phase in self.config.get('train', 'phase').split()]
dataset = utils.data.Dataset(
utils.data.load_pickles(paths),
transform=transform.augmentation.get_transform(self.config, self.config.get('transform', 'augmentation').split()),
one_hot=None if self.config.getboolean('train', 'cross_entropy') else len(self.category),
shuffle=self.config.getboolean('data', 'shuffle'),
dir=os.path.join(self.model_dir, 'exception'),
)
logging.info('num_examples=%d' % len(dataset))
try:
workers = self.config.getint('data', 'workers')
if torch.cuda.is_available():
workers = workers * torch.cuda.device_count()
except configparser.NoOptionError:
workers = multiprocessing.cpu_count()
collate_fn = utils.data.Collate(
transform.parse_transform(self.config, self.config.get('transform', 'resize_train')),
utils.train.load_sizes(self.config),
maintain=self.config.getint('data', 'maintain'),
transform_image=transform.get_transform(self.config, self.config.get('transform', 'image_train').split()),
transform_tensor=transform.get_transform(self.config, self.config.get('transform', 'tensor').split()),
dir=os.path.join(self.model_dir, 'exception'),
)
return torch.utils.data.DataLoader(dataset, batch_size=self.args.batch_size * torch.cuda.device_count() if torch.cuda.is_available() else self.args.batch_size, shuffle=True, num_workers=workers, collate_fn=collate_fn, pin_memory=torch.cuda.is_available())
示例5: iterate
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def iterate(self, data):
for key in data:
t = data[key]
if torch.is_tensor(t):
data[key] = utils.ensure_device(t)
tensor = torch.autograd.Variable(data['tensor'])
pred = pybenchmark.profile('inference')(model._inference)(self.inference, tensor)
height, width = data['image'].size()[1:3]
rows, cols = pred['feature'].size()[-2:]
loss, debug = pybenchmark.profile('loss')(model.loss)(self.anchors, norm_data(data, height, width, rows, cols), pred, self.config.getfloat('model', 'threshold'))
loss_hparam = {key: loss[key] * self.config.getfloat('hparam', key) for key in loss}
loss_total = sum(loss_hparam.values())
self.optimizer.zero_grad()
loss_total.backward()
try:
clip = self.config.getfloat('train', 'clip')
nn.utils.clip_grad_norm(self.inference.parameters(), clip)
except configparser.NoOptionError:
pass
self.optimizer.step()
return dict(
height=height, width=width, rows=rows, cols=cols,
data=data, pred=pred, debug=debug,
loss_total=loss_total, loss=loss, loss_hparam=loss_hparam,
)
示例6: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
if args.run is None:
buffer = io.StringIO()
config.write(buffer)
args.run = hashlib.md5(buffer.getvalue().encode()).hexdigest()
logging.info('cd ' + os.getcwd() + ' && ' + subprocess.list2cmdline([sys.executable] + sys.argv))
train = Train(args, config)
train()
logging.info(pybenchmark.stats)
示例7: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def __init__(self, env):
super(SummaryWorker, self).__init__()
self.env = env
self.config = env.config
self.queue = multiprocessing.Queue()
try:
self.timer_scalar = utils.train.Timer(env.config.getfloat('summary', 'scalar'))
except configparser.NoOptionError:
self.timer_scalar = lambda: False
try:
self.timer_image = utils.train.Timer(env.config.getfloat('summary', 'image'))
except configparser.NoOptionError:
self.timer_image = lambda: False
try:
self.timer_histogram = utils.train.Timer(env.config.getfloat('summary', 'histogram'))
except configparser.NoOptionError:
self.timer_histogram = lambda: False
with open(os.path.expanduser(os.path.expandvars(env.config.get('summary_histogram', 'parameters'))), 'r') as f:
self.histogram_parameters = utils.RegexList([line.rstrip() for line in f])
self.draw_points = utils.visualize.DrawPoints(env.limbs_index, colors=env.config.get('draw_points', 'colors').split())
self._draw_points = utils.visualize.DrawPoints(env.limbs_index, thickness=1)
self.draw_bbox = utils.visualize.DrawBBox()
self.draw_feature = utils.visualize.DrawFeature()
self.draw_cluster = utils.visualize.DrawCluster()
示例8: iterate
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def iterate(self, data):
for key in data:
t = data[key]
if torch.is_tensor(t):
data[key] = t.to(self.device)
tensor = data['tensor']
outputs = pybenchmark.profile('inference')(self.inference)(tensor)
height, width = data['image'].size()[1:3]
loss = pybenchmark.profile('loss')(model.Loss(self.config, data, self.limbs_index, height, width))
losses = [loss(**output) for output in outputs]
losses_hparam = [{name: self.loss_hparam(i, name, l) for name, l in loss.items()} for i, loss in enumerate(losses)]
loss_total = sum(sum(loss.values()) for loss in losses_hparam)
self.optimizer.zero_grad()
loss_total.backward()
try:
clip = self.config.getfloat('train', 'clip')
nn.utils.clip_grad_norm(self.inference.parameters(), clip)
except configparser.NoOptionError:
pass
self.optimizer.step()
return dict(
height=height, width=width,
data=data, outputs=outputs,
loss_total=loss_total, losses=losses, losses_hparam=losses_hparam,
)
示例9: load_cifar10
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def load_cifar10(is_train, augs, batch_size, root='data/CIFAR-10'):
dataset = torchvision.datasets.CIFAR10(root=root, train=is_train, transform=augs, download=False)
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=is_train, num_workers=num_workers)
示例10: train_with_data_aug
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def train_with_data_aug(train_augs, test_augs, lr=0.001):
batch_size, net = 256, utils.resnet18(10)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
loss = torch.nn.CrossEntropyLoss()
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
utils.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs=1)
示例11: make_args
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def make_args():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', nargs='+', default=['config.ini'], help='config file')
parser.add_argument('-m', '--modify', nargs='+', default=[], help='modify config')
parser.add_argument('-p', '--phase', nargs='+', default=['train', 'val', 'test'])
parser.add_argument('--rows', default=3, type=int)
parser.add_argument('--cols', default=3, type=int)
parser.add_argument('--logging', default='logging.yml', help='logging config')
return parser.parse_args()
示例12: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
model_dir = utils.get_model_dir(config)
category = utils.get_category(config)
anchors = torch.from_numpy(utils.get_anchors(config)).contiguous()
try:
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
except (FileNotFoundError, ValueError):
logging.warning('model cannot be loaded')
state_dict = None
dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), anchors, len(category))
logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in dnn.state_dict().values())))
if state_dict is not None:
dnn.load_state_dict(state_dict)
height, width = tuple(map(int, config.get('image', 'size').split()))
image = torch.autograd.Variable(torch.randn(args.batch_size, 3, height, width))
output = dnn(image)
state_dict = dnn.state_dict()
graph = utils.visualize.Graph(config, state_dict)
graph(output.grad_fn)
diff = [key for key in state_dict if key not in graph.drawn]
if diff:
logging.warning('variables not shown: ' + str(diff))
path = graph.dot.view(os.path.basename(model_dir) + '.gv', os.path.dirname(model_dir))
logging.info(path)
示例13: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
torch.manual_seed(args.seed)
cache_dir = utils.get_cache_dir(config)
model_dir = utils.get_model_dir(config)
category = utils.get_category(config, cache_dir if os.path.exists(cache_dir) else None)
anchors = utils.get_anchors(config)
anchors = torch.from_numpy(anchors).contiguous()
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
dnn = utils.parse_attr(config.get('model', 'dnn'))(model.ConfigChannels(config, state_dict), anchors, len(category))
dnn.load_state_dict(state_dict)
height, width = tuple(map(int, config.get('image', 'size').split()))
tensor = torch.randn(1, 3, height, width)
# Checksum
for key, var in dnn.state_dict().items():
a = var.cpu().numpy()
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
output = dnn(torch.autograd.Variable(tensor, volatile=True)).data
for key, a in [
('tensor', tensor.cpu().numpy()),
('output', output.cpu().numpy()),
]:
print('\t'.join(map(str, [key, a.shape, utils.abs_mean(a), hashlib.md5(a.tostring()).hexdigest()])))
示例14: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def main():
args = make_args()
config = configparser.ConfigParser()
utils.load_config(config, args.config)
for cmd in args.modify:
utils.modify_config(config, cmd)
with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f:
logging.config.dictConfig(yaml.load(f))
model_dir = utils.get_model_dir(config)
category = utils.get_category(config)
anchors = torch.from_numpy(utils.get_anchors(config)).contiguous()
path, step, epoch = utils.train.load_model(model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
_model = utils.parse_attr(config.get('model', 'dnn'))
dnn = _model(model.ConfigChannels(config, state_dict), anchors, len(category))
logging.info(humanize.naturalsize(sum(var.cpu().numpy().nbytes for var in dnn.state_dict().values())))
dnn.load_state_dict(state_dict)
height, width = tuple(map(int, config.get('image', 'size').split()))
image = torch.autograd.Variable(torch.randn(args.batch_size, 3, height, width))
output = dnn(image)
state_dict = dnn.state_dict()
d = utils.dense(state_dict[args.name])
keep = torch.LongTensor(np.argsort(d)[:int(len(d) * args.keep)])
modifier = utils.channel.Modifier(
args.name, state_dict, dnn,
lambda name, var: var[keep],
lambda name, var, mapper: var[mapper(keep, len(d))],
debug=args.debug,
)
modifier(output.grad_fn)
if args.debug:
path = modifier.dot.view('%s.%s.gv' % (os.path.basename(model_dir), os.path.basename(os.path.splitext(__file__)[0])), os.path.dirname(model_dir))
logging.info(path)
assert len(keep) == len(state_dict[args.name])
dnn = _model(model.ConfigChannels(config, state_dict), anchors, len(category))
dnn.load_state_dict(state_dict)
dnn(image)
if not args.debug:
torch.save(state_dict, path)
示例15: load
# 需要导入模块: import utils [as 别名]
# 或者: from utils import train [as 别名]
def load(self):
try:
path, step, epoch = utils.train.load_model(self.model_dir)
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
config_channels = model.ConfigChannels(self.config, state_dict)
except (FileNotFoundError, ValueError):
step, epoch = 0, 0
config_channels = model.ConfigChannels(self.config)
dnn = utils.parse_attr(self.config.get('model', 'dnn'))(config_channels, self.anchors, len(self.category))
if config_channels.state_dict is not None:
dnn.load_state_dict(config_channels.state_dict)
return step, epoch, dnn