当前位置: 首页>>代码示例>>Python>>正文


Python subprocess.process_in_parallel方法代码示例

本文整理汇总了Python中utils.subprocess.process_in_parallel方法的典型用法代码示例。如果您正苦于以下问题:Python subprocess.process_in_parallel方法的具体用法?Python subprocess.process_in_parallel怎么用?Python subprocess.process_in_parallel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils.subprocess的用法示例。


在下文中一共展示了subprocess.process_in_parallel方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: multi_gpu_test_retinanet_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_retinanet_on_dataset(num_images, output_dir, dataset):
    """
    If doing multi-gpu testing, we need to divide the data on various gpus and
    make the subprocess call for each child process that'll run test_retinanet()
    on its subset data. After all the subprocesses finish, we combine the results
    and return
    """
    # Retrieve the test_net binary path
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'retinanet_detections', num_images, binary, output_dir)

    # Combine the results from each subprocess now
    boxes, scores, classes, image_ids = [], [], [], []
    for det_data in outputs:
        boxes.extend(det_data['boxes'])
        scores.extend(det_data['scores'])
        classes.extend(det_data['classes'])
        image_ids.extend(det_data['ids'])
    return boxes, scores, classes, image_ids, 
开发者ID:lvpengyuan,项目名称:masktextspotter.caffe2,代码行数:27,代码来源:test_retinanet.py

示例2: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(args, num_images):
    """Multi-gpu inference on a dataset."""
    binary_dir = os.getcwd()
    binary = os.path.join(binary_dir, args.test_net_file + '.py')
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel('detection', num_images, binary, cfg, cfg.CKPT)

    # Collate the results from each subprocess
    all_boxes = []
    all_segms = []
    all_keyps = []
    all_parss = []
    all_pscores = []
    all_uvs = []

    for ins_data in outputs:
        all_boxes += ins_data['all_boxes']
        all_segms += ins_data['all_segms']
        all_keyps += ins_data['all_keyps']
        all_parss += ins_data['all_parss']
        all_pscores += ins_data['all_pscores']
        all_uvs += ins_data['all_uvs']

    det_file = os.path.join(cfg.CKPT, 'test', 'detections.pkl')
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            all_parss=all_parss,
            all_pscores=all_pscores,
            all_uvs=all_uvs
        ), det_file
    )

    logging_rank('Wrote detections to: {}'.format(os.path.abspath(det_file)), local_rank=0)
    return all_boxes, all_segms, all_keyps, all_parss, all_pscores, all_uvs 
开发者ID:soeaver,项目名称:Parsing-R-CNN,代码行数:43,代码来源:test_engine.py

示例3: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(
        args, dataset_name, proposal_file, num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    tag = 'discovery' if 'train' in dataset_name else 'detection'
    outputs = subprocess_utils.process_in_parallel(
        tag, num_images, binary, output_dir,
        args.load_ckpt, args.load_detectron, opts
    )

    # Collate the results from each subprocess
    all_boxes = {}
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_boxes.update(all_boxes_batch)
    if 'train' in dataset_name:
        det_file = os.path.join(output_dir, 'discovery.pkl')
    else:
        det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            cfg=cfg_yaml
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes 
开发者ID:ppengtang,项目名称:pcl.pytorch,代码行数:43,代码来源:test_engine.py

示例4: multi_gpu_generate_rpn_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_generate_rpn_on_dataset(
    args, dataset_name, _proposal_file_ignored, num_images, output_dir
):
    """Multi-gpu inference on a dataset."""
    # Retrieve the test_net binary path
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'rpn_proposals', num_images, binary, output_dir,
        args.load_ckpt, args.load_detectron, opts
    )

    # Collate the results from each subprocess
    boxes, scores, ids = [], [], []
    for rpn_data in outputs:
        boxes += rpn_data['boxes']
        scores += rpn_data['scores']
        ids += rpn_data['ids']
    rpn_file = os.path.join(output_dir, 'rpn_proposals.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file
    )
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file 
开发者ID:ruotianluo,项目名称:Context-aware-ZSR,代码行数:34,代码来源:rpn_generator.py

示例5: multi_gpu_generate_rpn_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_generate_rpn_on_dataset(
    weights_file, dataset_name, _proposal_file_ignored, num_images, output_dir
):
    """Multi-gpu inference on a dataset."""
    # Retrieve the test_net binary path
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    opts += ['TEST.WEIGHTS', weights_file]

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'rpn_proposals', num_images, binary, output_dir, opts
    )

    # Collate the results from each subprocess
    boxes, scores, ids = [], [], []
    for rpn_data in outputs:
        boxes += rpn_data['boxes']
        scores += rpn_data['scores']
        ids += rpn_data['ids']
    rpn_file = os.path.join(output_dir, 'rpn_proposals.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file
    )
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file 
开发者ID:ronghanghu,项目名称:seg_every_thing,代码行数:34,代码来源:rpn_generator.py

示例6: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir
    )

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            cfg=cfg_yaml
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps 
开发者ID:lvpengyuan,项目名称:masktextspotter.caffe2,代码行数:41,代码来源:test_engine.py

示例7: multi_gpu_generate_rpn_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_generate_rpn_on_dataset(num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    # Retrieve the test_net binary path
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'rpn_proposals', num_images, binary, output_dir
    )

    # Collate the results from each subprocess
    boxes, scores, ids = [], [], []
    for rpn_data in outputs:
        boxes += rpn_data['boxes']
        scores += rpn_data['scores']
        ids += rpn_data['ids']
    rpn_file = os.path.join(output_dir, 'rpn_proposals.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file
    )
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file 
开发者ID:lvpengyuan,项目名称:masktextspotter.caffe2,代码行数:28,代码来源:rpn_generator.py

示例8: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(num_images, output_dir):
    binary = os.path.join('tools/test_net.py')
    assert os.path.exists(binary), 'Binary {} not found'.format(binary)

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir)

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for j in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[j] += all_boxes_batch[j]
            all_segms[j] += all_segms_batch[j]
            all_keyps[j] += all_keyps_batch[j]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    robust_pickle_dump(
        dict(all_boxes=all_boxes,
             all_segms=all_segms,
             all_keyps=all_keyps,
             cfg=cfg_yaml),
        det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps 
开发者ID:facebookresearch,项目名称:DetectAndTrack,代码行数:33,代码来源:test_engine.py

示例9: multi_gpu_generate_rpn_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_generate_rpn_on_dataset(num_images, output_dir):
    # TODO(rbg): Need to have non-FB specific code path for OSS
    if cfg.CLUSTER.ON_CLUSTER:
        binary_dir = os.path.abspath(os.getcwd())
        binary = os.path.join(binary_dir, 'test_net.xar')
    else:
        assert parutil.is_lpar(), 'Binary must be inplace package style'
        binary_dir = os.path.dirname(parutil.get_runtime_path())
        binary = os.path.join(binary_dir, 'test_net.par')
    assert os.path.exists(binary), 'Binary {} not found'.format(binary)

    # Run inference in parallel in subprocesses
    outputs = subprocess_utils.process_in_parallel(
        'rpn_proposals', num_images, binary, output_dir)

    # Collate the results from each subprocess
    boxes, scores, ids = [], [], []
    for rpn_data in outputs:
        boxes += rpn_data['boxes']
        scores += rpn_data['scores']
        ids += rpn_data['ids']
    rpn_file = os.path.join(output_dir, 'rpn_proposals.pkl')
    cfg_yaml = yaml.dump(cfg)
    robust_pickle_dump(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file)
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file 
开发者ID:facebookresearch,项目名称:DetectAndTrack,代码行数:29,代码来源:rpn_generator.py

示例10: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(
        args, dataset_name, proposal_file, num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir,
        args.load_ckpt, args.load_detectron, opts
    )

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            cfg=cfg_yaml
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps 
开发者ID:roytseng-tw,项目名称:Detectron.pytorch,代码行数:48,代码来源:test_engine.py

示例11: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(
    weights_file, dataset_name, proposal_file, num_images, output_dir
):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    opts += ['TEST.WEIGHTS', weights_file]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir, opts
    )

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            cfg=cfg_yaml
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps 
开发者ID:ronghanghu,项目名称:seg_every_thing,代码行数:49,代码来源:test_engine.py

示例12: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(
        args, dataset_name, proposal_file, num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir,
        args.load_ckpt, args.load_detectron, args.net_name, args.mlp_head_dim, 
        args.heatmap_kernel_size, args.part_crop_size, args.use_kps17,
        opts)

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_hois = {}
    all_losses = defaultdict(list)
    all_keyps_vcoco = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    for det_data in outputs:
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        all_hois = {**all_hois, **det_data['all_hois']}
        for k, v in det_data['all_losses'].items():
            all_losses[k].extend(v)

        all_keyps_vcoco_batch = det_data['all_keyps_vcoco']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
            all_keyps_vcoco[cls_idx] += all_keyps_vcoco_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            all_hois=all_hois,
            all_keyps_vcoco=all_keyps_vcoco,
            all_losses=all_losses,
            cfg=cfg_yaml
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps, all_hois, all_keyps_vcoco, all_losses 
开发者ID:bobwan1995,项目名称:PMFNet,代码行数:61,代码来源:test_engine.py

示例13: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(
        args, dataset_name, proposal_file, num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Pass the target dataset and proposal file (if any) via the command line
    opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
    if proposal_file:
        opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]
        
    if args.do_val:
        opts += ['--do_val']
    if args.use_gt_boxes:
        opts += ['--use_gt_boxes']
        
    if args.use_gt_labels:
        opts += ['--use_gt_labels']

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'rel_detection', num_images, binary, output_dir,
        args.load_ckpt, args.load_detectron, opts
    )

    # Collate the results from each subprocess
    all_results = []
    for det_data in outputs:
        all_results += det_data
    
    if args.use_gt_boxes:
        if args.use_gt_labels:
            det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_prdcls.pkl')
        else:
            det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_sgcls.pkl')
    else:
        det_file = os.path.join(args.output_dir, 'rel_detections.pkl')
    save_object(all_results, det_file)
    logger.info('Wrote rel_detections to: {}'.format(os.path.abspath(det_file)))

    return all_results 
开发者ID:jz462,项目名称:Large-Scale-VRD.pytorch,代码行数:47,代码来源:test_engine_rel.py

示例14: multi_gpu_test_net_on_dataset

# 需要导入模块: from utils import subprocess [as 别名]
# 或者: from utils.subprocess import process_in_parallel [as 别名]
def multi_gpu_test_net_on_dataset(num_images, output_dir):
    """Multi-gpu inference on a dataset."""
    binary_dir = envu.get_runtime_dir()
    binary_ext = envu.get_py_bin_ext()
    binary = os.path.join(binary_dir, 'test_net' + binary_ext)
    assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)

    # Run inference in parallel in subprocesses
    # Outputs will be a list of outputs from each subprocess, where the output
    # of each subprocess is the dictionary saved by test_net().
    outputs = subprocess_utils.process_in_parallel(
        'detection', num_images, binary, output_dir
    )

    # Collate the results from each subprocess
    all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
    all_rois = []
    for det_data in outputs:
        all_rois.extend(det_data['roidb'])
        all_boxes_batch = det_data['all_boxes']
        all_segms_batch = det_data['all_segms']
        all_keyps_batch = det_data['all_keyps']
        for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
            all_boxes[cls_idx] += all_boxes_batch[cls_idx]
            all_segms[cls_idx] += all_segms_batch[cls_idx]
            all_keyps[cls_idx] += all_keyps_batch[cls_idx]
    det_file = os.path.join(output_dir, 'detections.pkl')
    cfg_yaml = yaml.dump(cfg)
    save_object(
        dict(
            all_boxes=all_boxes,
            all_segms=all_segms,
            all_keyps=all_keyps,
            cfg=cfg_yaml,
            all_rois=all_rois
        ), det_file
    )
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))

    return all_boxes, all_segms, all_keyps 
开发者ID:gangadhar-p,项目名称:NucleiDetectron,代码行数:44,代码来源:test_engine.py


注:本文中的utils.subprocess.process_in_parallel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。