本文整理汇总了Python中utils.parse_args方法的典型用法代码示例。如果您正苦于以下问题:Python utils.parse_args方法的具体用法?Python utils.parse_args怎么用?Python utils.parse_args使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.parse_args方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import parse_args [as 别名]
def main():
# Parse the JSON arguments
config_args = parse_args()
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(
config_args.experiment_dir)
model = MobileNetV2(config_args)
if config_args.cuda:
model.cuda()
cudnn.enabled = True
cudnn.benchmark = True
print("Loading Data...")
data = CIFAR10Data(config_args)
print("Data loaded successfully\n")
trainer = Train(model, data.trainloader, data.testloader, config_args)
if config_args.to_train:
try:
print("Training...")
trainer.train()
print("Training Finished\n")
except KeyboardInterrupt:
pass
if config_args.to_test:
print("Testing...")
trainer.test(data.testloader)
print("Testing Finished\n")
示例2: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import parse_args [as 别名]
def main():
global args
args = parse_args()
train_net(args)
示例3: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import parse_args [as 别名]
def main(_):
# Parsing Arguments
args = utils.parse_args()
mode = args.mode
train_iter = args.training_num
test_iter = args.test_iter
ckpt = utils.ckpt_path(args.ckpt)
input_list = {
'batch_size': args.batch_size,
'beta': args.beta,
'learning_rate': args.learning_rate,
'ckpt': ckpt,
'class_threshold': args.class_th,
'scale': args.scale}
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
tf.reset_default_graph()
model = StpnModel()
# Run Model
with tf.Session(config=config) as sess:
init = tf.global_variables_initializer()
if mode == 'train':
sess.run(init)
train(sess, model, input_list, 'rgb', train_iter) # Train RGB stream
sess.run(init)
train(sess, model, input_list, 'flow', train_iter) # Train FLOW stream
elif mode == 'test':
sess.run(init)
test(sess, model, init, input_list, test_iter) # Test
示例4: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import parse_args [as 别名]
def main():
# Parse the JSON arguments
try:
config_args = parse_args()
except:
print("Add a config file using \'--config file_name.json\'")
exit(1)
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)
# Reset the default Tensorflow graph
tf.reset_default_graph()
# Tensorflow specific configuration
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Data loading
data = DataLoader(config_args.batch_size, config_args.shuffle)
print("Loading Data...")
config_args.img_height, config_args.img_width, config_args.num_channels, \
config_args.train_data_size, config_args.test_data_size = data.load_data()
print("Data loaded\n\n")
# Model creation
print("Building the model...")
model = MobileNet(config_args)
print("Model is built successfully\n\n")
# Summarizer creation
summarizer = Summarizer(sess, config_args.summary_dir)
# Train class
trainer = Train(sess, model, data, summarizer)
if config_args.to_train:
try:
print("Training...")
trainer.train()
print("Training Finished\n\n")
except KeyboardInterrupt:
trainer.save_model()
if config_args.to_test:
print("Final test!")
trainer.test('val')
print("Testing Finished\n\n")
示例5: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import parse_args [as 别名]
def main():
# Parse the JSON arguments
config_args = parse_args()
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)
# Reset the default Tensorflow graph
tf.reset_default_graph()
# Tensorflow specific configuration
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
# Data loading
# The batch size is equal to 1 when testing to simulate the real experiment.
data_batch_size = config_args.batch_size if config_args.train_or_test == "train" else 1
data = DataLoader(data_batch_size, config_args.shuffle)
print("Loading Data...")
config_args.img_height, config_args.img_width, config_args.num_channels, \
config_args.train_data_size, config_args.test_data_size = data.load_data()
print("Data loaded\n\n")
# Model creation
print("Building the model...")
model = ShuffleNet(config_args)
print("Model is built successfully\n\n")
# Parameters visualization
show_parameters()
# Summarizer creation
summarizer = Summarizer(sess, config_args.summary_dir)
# Train class
trainer = Train(sess, model, data, summarizer)
if config_args.train_or_test == 'train':
try:
# print("FLOPs for batch size = " + str(config_args.batch_size) + "\n")
# calculate_flops()
print("Training...")
trainer.train()
print("Training Finished\n\n")
except KeyboardInterrupt:
trainer.save_model()
elif config_args.train_or_test == 'test':
# print("FLOPs for single inference \n")
# calculate_flops()
# This can be 'val' or 'test' or even 'train' according to the needs.
print("Testing...")
trainer.test('val')
print("Testing Finished\n\n")
else:
raise ValueError("Train or Test options only are allowed")