本文整理汇总了Python中utils.net.load_ckpt方法的典型用法代码示例。如果您正苦于以下问题:Python net.load_ckpt方法的具体用法?Python net.load_ckpt怎么用?Python net.load_ckpt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.net
的用法示例。
在下文中一共展示了net.load_ckpt方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: initialize_model_from_cfg
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def initialize_model_from_cfg(args, gpu_id=0):
"""Initialize a model from the global cfg. Loads test-time weights and
set to evaluation mode.
"""
model = model_builder.Generalized_RCNN()
model.eval()
if args.cuda:
model.cuda()
if args.load_ckpt:
load_name = args.load_ckpt
logger.info("loading checkpoint %s", load_name)
checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(model, checkpoint['model'])
if args.load_detectron:
logger.info("loading detectron weights %s", args.load_detectron)
load_detectron_weight(model, args.load_detectron)
model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True)
return model
示例2: initialize_model_from_cfg
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def initialize_model_from_cfg(args, gpu_id=0):
"""Initialize a model from the global cfg. Loads test-time weights and
set to evaluation mode.
"""
model = Generalized_RCNN()
model.eval()
if args.cuda:
model.cuda()
if args.load_ckpt:
load_name = args.load_ckpt
logger.info("loading checkpoint %s", load_name)
checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(model, checkpoint['model'])
# model.load_state_dict(checkpoint['model'])
if args.load_detectron:
logger.info("loading detectron weights %s", args.load_detectron)
load_detectron_weight(model, args.load_detectron)
model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True)
return model
示例3: initialize_model_from_cfg
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def initialize_model_from_cfg(args, gpu_id=0):
"""Initialize a model from the global cfg. Loads test-time weights and
set to evaluation mode.
"""
model = model_builder_rel.Generalized_RCNN()
model.eval()
if args.cuda:
model.cuda()
if args.load_ckpt:
load_name = args.load_ckpt
logger.info("loading checkpoint %s", load_name)
checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(model, checkpoint['model'])
if args.load_detectron:
logger.info("loading detectron weights %s", args.load_detectron)
load_detectron_weight(model, args.load_detectron)
model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True)
return model
示例4: parse_args
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def parse_args():
"""Parse in command line arguments"""
parser = argparse.ArgumentParser(description='Demonstrate mask-rcnn results')
parser.add_argument(
'--dataset', required=True,
help='training dataset')
parser.add_argument(
'--cfg', dest='cfg_file', required=True,
help='optional config file')
parser.add_argument(
'--set', dest='set_cfgs',
help='set config keys, will overwrite config in the cfg_file',
default=[], nargs='+')
parser.add_argument(
'--no_cuda', dest='cuda', help='whether use CUDA', action='store_false')
parser.add_argument('--load_ckpt', help='path of checkpoint to load')
parser.add_argument(
'--load_detectron', help='path to the detectron weight pickle file')
parser.add_argument(
'--image_dir',
help='directory to load images for demo')
parser.add_argument(
'--images', nargs='+',
help='images to infer. Must not use with --image_dir')
parser.add_argument(
'--output_dir',
help='directory to save demo results',
default="infer_outputs")
parser.add_argument(
'--merge_pdfs', type=distutils.util.strtobool, default=True)
args = parser.parse_args()
return args
示例5: multi_gpu_test_net_on_dataset
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def multi_gpu_test_net_on_dataset(
args, dataset_name, proposal_file, num_images, output_dir):
"""Multi-gpu inference on a dataset."""
binary_dir = envu.get_runtime_dir()
binary_ext = envu.get_py_bin_ext()
binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)
# Pass the target dataset and proposal file (if any) via the command line
opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
if proposal_file:
opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]
# Run inference in parallel in subprocesses
# Outputs will be a list of outputs from each subprocess, where the output
# of each subprocess is the dictionary saved by test_net().
tag = 'discovery' if 'train' in dataset_name else 'detection'
outputs = subprocess_utils.process_in_parallel(
tag, num_images, binary, output_dir,
args.load_ckpt, args.load_detectron, opts
)
# Collate the results from each subprocess
all_boxes = {}
for det_data in outputs:
all_boxes_batch = det_data['all_boxes']
all_boxes.update(all_boxes_batch)
if 'train' in dataset_name:
det_file = os.path.join(output_dir, 'discovery.pkl')
else:
det_file = os.path.join(output_dir, 'detections.pkl')
cfg_yaml = yaml.dump(cfg)
save_object(
dict(
all_boxes=all_boxes,
cfg=cfg_yaml
), det_file
)
logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
return all_boxes
示例6: _init_modules
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def _init_modules(self):
if cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS != '': # or cfg.MODEL.USE_SE_LOSS:
logger.info("Loading pretrained weights from %s", cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS)
resnet_utils.load_pretrained_imagenet_weights(self)
# Check if shared weights are equaled
if cfg.MODEL.MASK_ON and getattr(self.Mask_Head, 'SHARE_RES5', False):
assert self.Mask_Head.res5.state_dict() == self.Box_Head.res5.state_dict()
if cfg.MODEL.KEYPOINTS_ON and getattr(self.Keypoint_Head, 'SHARE_RES5', False):
assert self.Keypoint_Head.res5.state_dict() == self.Box_Head.res5.state_dict()
# load detectron pretrained weights for resnet
if cfg.RESNETS.COCO_PRETRAINED_WEIGHTS != '':
logger.info("loading detectron pretrained weights from %s", cfg.RESNETS.COCO_PRETRAINED_WEIGHTS)
load_detectron_weight(self, cfg.RESNETS.COCO_PRETRAINED_WEIGHTS, ('cls_score', 'bbox_pred'))
if cfg.VGG16.COCO_PRETRAINED_WEIGHTS != '':
logger.info("loading pretrained weights from %s", cfg.VGG16.COCO_PRETRAINED_WEIGHTS)
checkpoint = torch.load(cfg.VGG16.COCO_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage)
# not using the last softmax layers
del checkpoint['model']['Box_Outs.cls_score.weight']
del checkpoint['model']['Box_Outs.cls_score.bias']
del checkpoint['model']['Box_Outs.bbox_pred.weight']
del checkpoint['model']['Box_Outs.bbox_pred.bias']
net_utils.load_ckpt(self, checkpoint['model'])
if cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS != '':
logger.info("loading trained and to be finetuned weights from %s", cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS)
checkpoint = torch.load(cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(self, checkpoint['model'])
if cfg.TRAIN.FREEZE_CONV_BODY:
for p in self.Conv_Body.parameters():
p.requires_grad = False
示例7: load_detector_weights
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def load_detector_weights(self, weight_name):
logger.info("loading pretrained weights from %s", weight_name)
checkpoint = torch.load(weight_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(self, checkpoint['model'])
# freeze everything above the rel module
for p in self.Conv_Body.parameters():
p.requires_grad = False
for p in self.RPN.parameters():
p.requires_grad = False
if not cfg.MODEL.UNFREEZE_DET:
for p in self.Box_Head.parameters():
p.requires_grad = False
for p in self.Box_Outs.parameters():
p.requires_grad = False
示例8: parse_args
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Face Detection using Faster R-CNN')
parser.add_argument(
'--exp_name', required=True, dest='det_dir',
help='detector name'
)
parser.add_argument(
'--no_cuda', dest='cuda', help='whether use CUDA',
action='store_false'
)
parser.add_argument(
'--cfg', dest='cfg_file', required=True,
help='config file'
)
parser.add_argument(
'--set', dest='set_cfgs',
help='set config keys, will overwrite config in the cfg_file',
default=[], nargs='+'
)
parser.add_argument(
'--load_ckpt', help='path of checkpoint to load'
)
parser.add_argument(
'--load_detectron', help='path to the detectron weight pickle file'
)
parser.add_argument(
'--split', dest='split', default='val', help='train or val'
)
args = parser.parse_args()
return args
示例9: parse_args
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def parse_args():
"""Parse in command line arguments"""
parser = argparse.ArgumentParser(description='Demonstrate mask-rcnn results')
parser.add_argument(
'--dataset', required=True,
help='training dataset')
parser.add_argument(
'--cfg', dest='cfg_file', required=True,
help='optional config file')
parser.add_argument(
'--set', dest='set_cfgs',
help='set config keys, will overwrite config in the cfg_file',
default=[], nargs='+')
parser.add_argument(
'--no_cuda', dest='cuda', help='whether use CUDA', action='store_false')
parser.add_argument('--load_ckpt', help='path of checkpoint to load')
parser.add_argument(
'--load_detectron', help='path to the detectron weight pickle file')
parser.add_argument(
'--image_dir',
help='directory to load images for demo')
parser.add_argument(
'--images', nargs='+',
help='images to infer. Must not use with --image_dir')
parser.add_argument(
'--output_dir',
help='directory to save demo results',
default="infer_outputs")
parser.add_argument(
'--merge_pdfs', type=distutils.util.strtobool, default=False)
args = parser.parse_args()
return args
示例10: multi_gpu_test_net_on_dataset
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def multi_gpu_test_net_on_dataset(
args, dataset_name, proposal_file, num_images, output_dir):
"""Multi-gpu inference on a dataset."""
binary_dir = envu.get_runtime_dir()
binary_ext = envu.get_py_bin_ext()
binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)
# Pass the target dataset and proposal file (if any) via the command line
opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
if proposal_file:
opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]
# Run inference in parallel in subprocesses
# Outputs will be a list of outputs from each subprocess, where the output
# of each subprocess is the dictionary saved by test_net().
outputs = subprocess_utils.process_in_parallel(
'detection', num_images, binary, output_dir,
args.load_ckpt, args.load_detectron, opts
)
# Collate the results from each subprocess
all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
for det_data in outputs:
all_boxes_batch = det_data['all_boxes']
all_segms_batch = det_data['all_segms']
all_keyps_batch = det_data['all_keyps']
for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
all_boxes[cls_idx] += all_boxes_batch[cls_idx]
all_segms[cls_idx] += all_segms_batch[cls_idx]
all_keyps[cls_idx] += all_keyps_batch[cls_idx]
det_file = os.path.join(output_dir, 'detections.pkl')
cfg_yaml = yaml.dump(cfg)
save_object(
dict(
all_boxes=all_boxes,
all_segms=all_segms,
all_keyps=all_keyps,
cfg=cfg_yaml
), det_file
)
logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
return all_boxes, all_segms, all_keyps
示例11: initialize_model_from_cfg
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def initialize_model_from_cfg(args, roidb=None, gpu_id=0):
"""Initialize a model from the global cfg. Loads test-time weights and
set to evaluation mode.
"""
model = model_builder.Generalized_RCNN()
model.eval()
cfg.immutable(False)
cfg.TEST.CLASS_SPLIT = {'source': roidb[0]['source'], 'target': roidb[0]['target']}
cfg.immutable(True)
if 'word_embeddings' in roidb[0]:
model.Box_Outs.set_word_embedding(torch.tensor(roidb[0]['word_embeddings']))
if cfg.MODEL.IGNORE_CLASSES:
if cfg.MODEL.IGNORE_CLASSES == 'all':
roidb[0]['all'] = roidb[0]['source'] + roidb[0]['target']
model._ignore_classes = roidb[0][cfg.MODEL.IGNORE_CLASSES]
model.Box_Outs._ignore_classes = roidb[0][cfg.MODEL.IGNORE_CLASSES]
if True:
tmp = {}
for rel in roidb[0]['relationships']:
tmp[(rel['subject_id'], rel['object_id'])] = \
tmp.get((rel['subject_id'], rel['object_id']), []) + [rel['rel_id']]
if cfg.MODEL.RELATION_COOCCUR:
for k in tmp:
tmp[k] = [1]
if cfg.MODEL.NUM_RELATIONS > 0:
model.Rel_Outs.relationship_dict = tmp
if args.cuda:
model.cuda()
if args.load_ckpt:
load_name = args.load_ckpt
logger.info("loading checkpoint %s", load_name)
checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage)
net_utils.load_ckpt(model, checkpoint['model'])
if args.load_detectron:
logger.info("loading detectron weights %s", args.load_detectron)
load_detectron_weight(model, args.load_detectron)
model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True)
return model
示例12: multi_gpu_test_net_on_dataset
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def multi_gpu_test_net_on_dataset(
args, dataset_name, proposal_file, num_images, output_dir):
"""Multi-gpu inference on a dataset."""
binary_dir = envu.get_runtime_dir()
binary_ext = envu.get_py_bin_ext()
binary = os.path.join(binary_dir, args.test_net_file + binary_ext)
assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary)
# Pass the target dataset and proposal file (if any) via the command line
opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)]
if proposal_file:
opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)]
# Run inference in parallel in subprocesses
# Outputs will be a list of outputs from each subprocess, where the output
# of each subprocess is the dictionary saved by test_net().
outputs = subprocess_utils.process_in_parallel(
'detection', num_images, binary, output_dir,
args.load_ckpt, args.load_detectron, args.net_name, args.mlp_head_dim,
args.heatmap_kernel_size, args.part_crop_size, args.use_kps17,
opts)
# Collate the results from each subprocess
all_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_segms = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_keyps = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
all_hois = {}
all_losses = defaultdict(list)
all_keyps_vcoco = [[] for _ in range(cfg.MODEL.NUM_CLASSES)]
for det_data in outputs:
all_boxes_batch = det_data['all_boxes']
all_segms_batch = det_data['all_segms']
all_keyps_batch = det_data['all_keyps']
all_hois = {**all_hois, **det_data['all_hois']}
for k, v in det_data['all_losses'].items():
all_losses[k].extend(v)
all_keyps_vcoco_batch = det_data['all_keyps_vcoco']
for cls_idx in range(1, cfg.MODEL.NUM_CLASSES):
all_boxes[cls_idx] += all_boxes_batch[cls_idx]
all_segms[cls_idx] += all_segms_batch[cls_idx]
all_keyps[cls_idx] += all_keyps_batch[cls_idx]
all_keyps_vcoco[cls_idx] += all_keyps_vcoco_batch[cls_idx]
det_file = os.path.join(output_dir, 'detections.pkl')
cfg_yaml = yaml.dump(cfg)
save_object(
dict(
all_boxes=all_boxes,
all_segms=all_segms,
all_keyps=all_keyps,
all_hois=all_hois,
all_keyps_vcoco=all_keyps_vcoco,
all_losses=all_losses,
cfg=cfg_yaml
), det_file
)
logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
return all_boxes, all_segms, all_keyps, all_hois, all_keyps_vcoco, all_losses
示例13: _init_modules
# 需要导入模块: from utils import net [as 别名]
# 或者: from utils.net import load_ckpt [as 别名]
def _init_modules(self):
# VGG16 imagenet pretrained model is initialized in VGG16.py
if cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS != '':
logger.info("Loading pretrained weights from %s", cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS)
resnet_utils.load_pretrained_imagenet_weights(self)
if cfg.RESNETS.VRD_PRETRAINED_WEIGHTS != '':
self.load_detector_weights(cfg.RESNETS.VRD_PRETRAINED_WEIGHTS)
if cfg.VGG16.VRD_PRETRAINED_WEIGHTS != '':
self.load_detector_weights(cfg.VGG16.VRD_PRETRAINED_WEIGHTS)
if cfg.RESNETS.VG_PRETRAINED_WEIGHTS != '':
self.load_detector_weights(cfg.RESNETS.VG_PRETRAINED_WEIGHTS)
if cfg.VGG16.VG_PRETRAINED_WEIGHTS != '':
self.load_detector_weights(cfg.VGG16.VG_PRETRAINED_WEIGHTS)
if cfg.TRAIN.FREEZE_CONV_BODY:
for p in self.Conv_Body.parameters():
p.requires_grad = False
if cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS != '' or cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS != '' or \
cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS != '' or cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS != '':
if cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS != '':
logger.info("loading prd pretrained weights from %s", cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS)
checkpoint = torch.load(cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage)
if cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS != '':
logger.info("loading prd pretrained weights from %s", cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS)
checkpoint = torch.load(cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage)
if cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS != '':
logger.info("loading prd pretrained weights from %s", cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS)
checkpoint = torch.load(cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage)
if cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS != '':
logger.info("loading prd pretrained weights from %s", cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS)
checkpoint = torch.load(cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage)
# not using the last softmax layers
del checkpoint['model']['Box_Outs.cls_score.weight']
del checkpoint['model']['Box_Outs.cls_score.bias']
del checkpoint['model']['Box_Outs.bbox_pred.weight']
del checkpoint['model']['Box_Outs.bbox_pred.bias']
net_utils.load_ckpt(self.Prd_RCNN, checkpoint['model'])
if cfg.TRAIN.FREEZE_PRD_CONV_BODY:
for p in self.Prd_RCNN.Conv_Body.parameters():
p.requires_grad = False
if cfg.TRAIN.FREEZE_PRD_BOX_HEAD:
for p in self.Prd_RCNN.Box_Head.parameters():
p.requires_grad = False