本文整理汇总了Python中utils.logging.Logger方法的典型用法代码示例。如果您正苦于以下问题:Python logging.Logger方法的具体用法?Python logging.Logger怎么用?Python logging.Logger使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.logging
的用法示例。
在下文中一共展示了logging.Logger方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_logger
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def create_logger(self):
"""
Create the logger including the file log and summary log
:return: logger and summary writer
"""
if self.args.training:
logger = Logger(self.args.log, '%s-%s' % (self.args.method, self.args.postfix),
rm_exist=self.args.start_epoch == 0)
logger.update_dict(vars(self.args))
if self.args.mxboard:
from mxboard import SummaryWriter
sw = SummaryWriter(logdir=self.args.log)
else:
sw = None
else:
logger, sw = None, None
return logger, sw
示例2: train
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def train(opt, model, dataloader):
# Logging
logger = logging.Logger(opt.ckpt_path, opt.split)
stats = logging.Statistics(opt.ckpt_path, opt.split)
logger.log(opt)
model.load(opt.load_ckpt_paths, opt.load_opts, opt.load_epoch)
for epoch in range(1, opt.n_epochs + 1):
for step, data in enumerate(dataloader, 1):
# inputs is a list of input of each modality
inputs, label, _ = data
ret = model.train(inputs, label)
update = stats.update(len(label), ret)
if utils.is_due(step, opt.print_every):
utils.info('epoch {}/{}, step {}/{}: {}'.format(
epoch, opt.n_epochs, step, len(dataloader), update))
logger.log('[Summary] epoch {}/{}: {}'.format(epoch, opt.n_epochs,
stats.summarize()))
if utils.is_due(epoch, opt.n_epochs, opt.save_every):
model.save(epoch)
stats.save()
logger.log('***** saved *****')
if utils.is_due(epoch, opt.lr_decay_at):
lrs = model.lr_decay()
logger.log('***** lr decay *****: {}'.format(lrs))
示例3: test
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def test(opt, model, dataloader):
# Logging
logger = logging.Logger(opt.ckpt_path, opt.split)
stats = logging.Statistics(opt.ckpt_path, opt.split)
logger.log(opt)
model.load(opt.load_ckpt_paths, opt.load_opts, opt.load_epoch)
all_scores = []
video_names = []
for step, data in enumerate(dataloader, 1):
inputs, label, vid_name = data
info_acc, logits, scores = model.test(inputs, label, opt.timestep)
all_scores.append(scores)
video_names.append(vid_name[0])
update = stats.update(logits.shape[0], info_acc)
if utils.is_due(step, opt.print_every):
utils.info('step {}/{}: {}'.format(step, len(dataloader), update))
logger.log('[Summary] {}'.format(stats.summarize()))
# Evaluate
iou_thresholds = [0.1, 0.3, 0.5]
groundtruth_dir = os.path.join(opt.dset_path, opt.dset, 'groundtruth',
'validation/cross-subject')
assert os.path.exists(groundtruth_dir), '{} does not exist'.format(groundtruth_dir)
mean_aps = calc_map(opt, all_scores, video_names, groundtruth_dir, iou_thresholds)
for i in range(len(iou_thresholds)):
logger.log('IoU: {}, mAP: {}'.format(iou_thresholds[i], mean_aps[i]))
示例4: train
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def train(opt, model, dataloader):
"""Train the model."""
# Logging
logger = logging.Logger(opt.ckpt_path, opt.split)
stats = logging.Statistics(opt.ckpt_path, opt.split)
logger.log(opt)
model.load(opt.load_ckpt_paths, opt.load_epoch)
for epoch in range(1, opt.n_epochs + 1):
for step, data in enumerate(dataloader, 1):
ret = model.train(*data)
update = stats.update(data[-1].size(0), ret)
if utils.is_due(step, opt.print_every):
utils.info('epoch {}/{}, step {}/{}: {}'.format(
epoch, opt.n_epochs, step, len(dataloader), update))
logger.log('[Summary] epoch {}/{}: {}'.format(epoch, opt.n_epochs,
stats.summarize()))
if utils.is_due(epoch, opt.n_epochs, opt.save_every):
model.save(epoch)
logger.log('***** saved *****')
if utils.is_due(epoch, opt.lr_decay_at):
lrs = model.lr_decay()
logger.log('***** lr decay *****: {}'.format(lrs))
示例5: test
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def test(opt, model, dataloader):
'''Test model.'''
# Logging
logger = logging.Logger(opt.load_ckpt_path, opt.split)
stats = logging.Statistics(opt.ckpt_path, opt.split)
logger.log(opt)
logits, labels = [], []
model.load(opt.load_ckpt_paths, opt.load_epoch)
for step, data in enumerate(dataloader, 1):
inputs, label = data
info_acc, logit = model.test(inputs, label)
logits.append(utils.to_numpy(logit.squeeze(0)))
labels.append(utils.to_numpy(label))
update = stats.update(label.size(0), info_acc)
if utils.is_due(step, opt.print_every):
utils.info('step {}/{}: {}'.format(step, len(dataloader), update))
logits = np.concatenate(logits, axis=0)
length, n_classes = logits.shape
labels = np.concatenate(labels)
scores = utils.softmax(logits, axis=1)
# Accuracy
preds = np.argmax(scores, axis=1)
acc = np.sum(preds == labels) / length
# Average precision
y_true = np.zeros((length, n_classes))
y_true[np.arange(length), labels] = 1
aps = average_precision_score(y_true, scores, average=None)
aps = list(filter(lambda x: not np.isnan(x), aps))
mAP = np.mean(aps)
logger.log('[Summary]: {}'.format(stats.summarize()))
logger.log('Acc: {}, mAP: {}'.format(acc, mAP))
示例6: run
# 需要导入模块: from utils import logging [as 别名]
# 或者: from utils.logging import Logger [as 别名]
def run(_run, _config, _log):
# check args sanity
_config = args_sanity_check(_config, _log)
args = SN(**_config)
args.device = "cuda" if args.use_cuda else "cpu"
# setup loggers
logger = Logger(_log)
_log.info("Experiment Parameters:")
experiment_params = pprint.pformat(_config,
indent=4,
width=1)
_log.info("\n\n" + experiment_params + "\n")
# configure tensorboard logger
unique_token = "{}__{}".format(args.name, datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
args.unique_token = unique_token
if args.use_tensorboard:
tb_logs_direc = os.path.join(dirname(dirname(abspath(__file__))), "results", "tb_logs")
tb_exp_direc = os.path.join(tb_logs_direc, "{}").format(unique_token)
logger.setup_tb(tb_exp_direc)
# sacred is on by default
logger.setup_sacred(_run)
# Run and train
run_sequential(args=args, logger=logger)
# Clean up after finishing
print("Exiting Main")
print("Stopping all threads")
for t in threading.enumerate():
if t.name != "MainThread":
print("Thread {} is alive! Is daemon: {}".format(t.name, t.daemon))
t.join(timeout=1)
print("Thread joined")
print("Exiting script")
# Making sure framework really exits
os._exit(os.EX_OK)