本文整理汇总了Python中utils.logger.Logger方法的典型用法代码示例。如果您正苦于以下问题:Python logger.Logger方法的具体用法?Python logger.Logger怎么用?Python logger.Logger使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.logger
的用法示例。
在下文中一共展示了logger.Logger方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def __init__(self, model, dataloader, run_id, config, ohe_headers):
super(ESRNNTrainer, self).__init__()
self.model = model.to(config['device'])
self.config = config
self.dl = dataloader
self.ohe_headers = ohe_headers
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=config['learning_rate'])
# self.optimizer = torch.optim.ASGD(self.model.parameters(), lr=config['learning_rate'])
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer,
step_size=config['lr_anneal_step'],
gamma=config['lr_anneal_rate'])
self.criterion = PinballLoss(self.config['training_tau'],
self.config['output_size'] * self.config['batch_size'], self.config['device'])
self.epochs = 0
self.max_epochs = config['num_of_train_epochs']
self.run_id = str(run_id)
self.prod_str = 'prod' if config['prod'] else 'dev'
self.log = Logger("../logs/train%s%s%s" % (self.config['variable'], self.prod_str, self.run_id))
self.csv_save_path = None
示例2: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
opt = opts().parse()
now = datetime.datetime.now()
logger = Logger(opt.saveDir + '/logs_{}'.format(now.isoformat()))
if opt.loadModel == 'none':
model = inflate(opt).cuda()
elif opt.loadModel == 'scratch':
model = Pose3D(opt.nChannels, opt.nStack, opt.nModules, opt.numReductions, opt.nRegModules, opt.nRegFrames, ref.nJoints).cuda()
else :
model = torch.load(opt.loadModel).cuda()
train_loader = torch.utils.data.DataLoader(
h36m('train',opt),
batch_size = opt.dataloaderSize,
shuffle = False,
num_workers = int(ref.nThreads)
)
optimizer = torch.optim.RMSprop(
[{'params': model.parameters(), 'lr': opt.LRhg}],
alpha = ref.alpha,
eps = ref.epsilon,
weight_decay = ref.weightDecay,
momentum = ref.momentum
)
for epoch in range(1, opt.nEpochs + 1):
loss_train, acc_train = train(epoch, opt, train_loader, model, optimizer)
logger.scalar_summary('loss_train', loss_train, epoch)
logger.scalar_summary('acc_train', acc_train, epoch)
logger.write('{:8f} {:8f} \n'.format(loss_train, acc_train))
logger.close()
示例3: build_tensorboard
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def build_tensorboard(self):
"""Build a tensorboard logger."""
from utils.logger import Logger
self.logger = Logger(config.log_dir)
示例4: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
# capture the config path from the run arguments
# then process the json configuration file
try:
args = get_args()
config = process_config(args.config)
except:
print("missing or invalid arguments")
exit(0)
# create the experiments dirs
create_dirs([config.summary_dir, config.checkpoint_dir])
# create tensorflow session
sess = tf.Session()
# create your data generator
data = DataGenerator(config)
# create an instance of the model you want
model = ExampleModel(config)
# create tensorboard logger
logger = Logger(sess, config)
# create trainer and pass all the previous components to it
trainer = ExampleTrainer(sess, model, data, config, logger)
#load model if exists
model.load(sess)
# here you train your model
trainer.train()
示例5: __init__
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def __init__(self, time_grain=u'ms',
verbose_in=True, verbose_out=True, verbose=True,
msg_in=u'', msg_out=u'', msg=u'', logfile=None):
self.time_grain = time_grain
self.verbose_in = verbose_in
self.verbose_out = verbose_out
self.verbose = verbose
self.msg_in = msg_in
self.msg_out = msg_out
self.msg = msg
if logfile:
self.logger = Logger('flogger', log2console=False, log2file=True,
logfile=logfile).get_logger()
else:
self.logger = clogger
示例6: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
# 创建日志模块
logger = Logger()
log_process = Process(target=run_log_process, args=(logger,))
log_process.start()
saveMainPid(os.getpid())
# 检查软件更新
checkUpdate(logger)
# 创建策略引擎到界面的队列,发送资金数据
eg2ui_q = Queue(10000)
# 创建界面到策略引擎的队列,发送策略全路径
ui2eg_q = Queue(10000)
# 创建策略引擎
engine = StrategyEngine(logger, eg2ui_q, ui2eg_q)
engine_process = Process(target=run_engine_process, args=(engine,))
engine_process.start()
control = Controller(logger, ui2eg_q, eg2ui_q)
control.run()
time.sleep(3)
import atexit
def exitHandler():
control.receiveEgThread.stop()
# 1. 先关闭策略进程, 现在策略进程会成为僵尸进程
# todo 此处需要重载engine的terminate函数
# 2. 关闭engine进程
engine_process.terminate()
engine_process.join()
log_process.terminate()
log_process.join()
atexit.register(exitHandler)
示例7: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
now = datetime.datetime.now()
logger = Logger(opt.saveDir + '/logs_{}'.format(now.isoformat()))
model, optimizer = getModel(opt)
criterion = torch.nn.MSELoss()
if opt.GPU > -1:
print('Using GPU', opt.GPU)
model = model.cuda(opt.GPU)
criterion = criterion.cuda(opt.GPU)
val_loader = torch.utils.data.DataLoader(
Dataset(opt, 'val'),
batch_size = 1,
shuffle = True if opt.DEBUG > 1 else False,
num_workers = 1
)
if opt.test:
_, preds = val(0, opt, val_loader, model, criterion)
torch.save({'opt': opt, 'preds': preds}, os.path.join(opt.saveDir, 'preds.pth'))
return
train_loader = torch.utils.data.DataLoader(
Dataset(opt, 'train'),
batch_size = opt.trainBatch,
shuffle = True,
num_workers = int(opt.nThreads)
)
for epoch in range(1, opt.nEpochs + 1):
mark = epoch if opt.saveAllModels else 'last'
log_dict_train, _ = train(epoch, opt, train_loader, model, criterion, optimizer)
for k, v in log_dict_train.items():
logger.scalar_summary('train_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
if epoch % opt.valIntervals == 0:
log_dict_val, preds = val(epoch, opt, val_loader, model, criterion)
for k, v in log_dict_val.items():
logger.scalar_summary('val_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
saveModel(os.path.join(opt.saveDir, 'model_{}.checkpoint'.format(mark)), model) # optimizer
logger.write('\n')
if epoch % opt.dropLR == 0:
lr = opt.LR * (0.1 ** (epoch // opt.dropLR))
print('Drop LR to', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
logger.close()
torch.save(model.cpu(), os.path.join(opt.saveDir, 'model_cpu.pth'))
示例8: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main(args):
# create checkpoint dir
if not isdir(args.checkpoint):
mkdir_p(args.checkpoint)
# create model
model = network.__dict__[cfg.model](cfg.output_shape, cfg.num_class, pretrained = True)
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion1 = torch.nn.MSELoss().cuda() # for Global loss
criterion2 = torch.nn.MSELoss(reduce=False).cuda() # for refine loss
optimizer = torch.optim.Adam(model.parameters(),
lr = cfg.lr,
weight_decay=cfg.weight_decay)
if args.resume:
if isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
pretrained_dict = checkpoint['state_dict']
model.load_state_dict(pretrained_dict)
args.start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
logger = Logger(join(args.checkpoint, 'log.txt'), resume=True)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
logger = Logger(join(args.checkpoint, 'log.txt'))
logger.set_names(['Epoch', 'LR', 'Train Loss'])
cudnn.benchmark = True
print(' Total params: %.2fMB' % (sum(p.numel() for p in model.parameters())/(1024*1024)*4))
train_loader = torch.utils.data.DataLoader(
MscocoMulti(cfg),
batch_size=cfg.batch_size*args.num_gpus, shuffle=True,
num_workers=args.workers, pin_memory=True)
for epoch in range(args.start_epoch, args.epochs):
lr = adjust_learning_rate(optimizer, epoch, cfg.lr_dec_epoch, cfg.lr_gamma)
print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr))
# train for one epoch
train_loss = train(train_loader, model, [criterion1, criterion2], optimizer)
print('train_loss: ',train_loss)
# append logger file
logger.append([epoch + 1, lr, train_loss])
save_model({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, checkpoint=args.checkpoint)
logger.close()
示例9: train
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def train(self, data_train, data_valid, enable_es=1):
with tf.Session(graph=self.graph) as session:
tf.set_random_seed(1234)
logger = Logger(session, self.summary_dir)
# here you initialize the tensorflow saver that will be used in saving the checkpoints.
# max_to_keep: defaults to keeping the 5 most recent checkpoints of your model
saver = tf.train.Saver()
early_stopping = EarlyStopping()
if(self.restore==1 and self.load(session, saver) ):
num_epochs_trained = self.vae_graph.cur_epoch_tensor.eval(session)
print('EPOCHS trained: ', num_epochs_trained)
else:
print('Initizalizing Variables ...')
tf.global_variables_initializer().run()
if(self.vae_graph.cur_epoch_tensor.eval(session) == self.epochs):
return
for cur_epoch in range(self.vae_graph.cur_epoch_tensor.eval(session), self.epochs + 1, 1):
print('EPOCH: ', cur_epoch)
self.current_epoch = cur_epoch
# beta=utils.sigmoid(cur_epoch- 50)
beta = 1.
loss_tr, recons_tr, cond_prior_tr, L2_loss = self.train_epoch(session, logger, data_train, beta=beta)
if np.isnan(loss_tr):
print ('Encountered NaN, stopping training. Please check the learning_rate settings and the momentum.')
print('Recons: ', recons_tr)
print('KL: ', cond_prior_tr)
sys.exit()
loss_val, recons_val, cond_prior_val = self.valid_epoch(session, logger, data_valid, beta=beta)
print('TRAIN | Loss: ', loss_tr, ' | Recons: ', recons_tr, ' | KL: ', cond_prior_tr, ' | L2_loss: ', L2_loss)
print('VALID | Loss: ', loss_val, ' | Recons: ', recons_val, ' | KL: ', cond_prior_val)
if(cur_epoch>0 and cur_epoch % 10 == 0):
self.save(session, saver, self.vae_graph.global_step_tensor.eval(session))
z_matrix = self.vae_graph.get_z_matrix(session, data_valid.random_batch(self.batch_size))
np.savez(self.z_file, z_matrix)
session.run(self.vae_graph.increment_cur_epoch_tensor)
#Early stopping
if(enable_es==1 and early_stopping.stop(loss_val)):
print('Early Stopping!')
break
self.save(session,saver, self.vae_graph.global_step_tensor.eval(session))
z_matrix = self.vae_graph.get_z_matrix(session, data_valid.random_batch(self.batch_size))
np.savez(self.z_file, z_matrix)
return
示例10: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
opt = opts().parse()
now = datetime.datetime.now()
logger = Logger(opt.saveDir, now.isoformat())
model, optimizer = getModel(opt)
criterion = torch.nn.MSELoss().cuda()
# if opt.GPU > -1:
# print('Using GPU {}',format(opt.GPU))
# model = model.cuda(opt.GPU)
# criterion = criterion.cuda(opt.GPU)
# dev = opt.device
model = model.cuda()
val_loader = torch.utils.data.DataLoader(
MPII(opt, 'val'),
batch_size = 1,
shuffle = False,
num_workers = int(ref.nThreads)
)
if opt.test:
log_dict_train, preds = val(0, opt, val_loader, model, criterion)
sio.savemat(os.path.join(opt.saveDir, 'preds.mat'), mdict = {'preds': preds})
return
# pyramidnet pretrain一次,先定义gen的训练数据loader
train_loader = torch.utils.data.DataLoader(
MPII(opt, 'train'),
batch_size = opt.trainBatch,
shuffle = True if opt.DEBUG == 0 else False,
num_workers = int(ref.nThreads)
)
# 调用train方法
for epoch in range(1, opt.nEpochs + 1):
log_dict_train, _ = train(epoch, opt, train_loader, model, criterion, optimizer)
for k, v in log_dict_train.items():
logger.scalar_summary('train_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
if epoch % opt.valIntervals == 0:
log_dict_val, preds = val(epoch, opt, val_loader, model, criterion)
for k, v in log_dict_val.items():
logger.scalar_summary('val_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
#saveModel(model, optimizer, os.path.join(opt.saveDir, 'model_{}.checkpoint'.format(epoch)))
torch.save(model, os.path.join(opt.saveDir, 'model_{}.pth'.format(epoch)))
sio.savemat(os.path.join(opt.saveDir, 'preds_{}.mat'.format(epoch)), mdict = {'preds': preds})
logger.write('\n')
if epoch % opt.dropLR == 0:
lr = opt.LR * (0.1 ** (epoch // opt.dropLR))
print('Drop LR to {}'.format(lr))
adjust_learning_rate(optimizer, lr)
logger.close()
torch.save(model.cpu(), os.path.join(opt.saveDir, 'model_cpu.pth'))
示例11: main
# 需要导入模块: from utils import logger [as 别名]
# 或者: from utils.logger import Logger [as 别名]
def main():
log = logger.Logger(args.savemodel, name=args.logname)
total_iters = 0
for epoch in range(1, args.epochs+1):
total_train_loss = 0
adjust_learning_rate(optimizer,epoch)
## training ##
for batch_idx, (imgL_crop, imgR_crop, disp_crop_L) in enumerate(TrainImgLoader):
start_time = time.time()
loss,vis = train(imgL_crop,imgR_crop, disp_crop_L)
print('Iter %d training loss = %.3f , time = %.2f' %(batch_idx, loss, time.time() - start_time))
total_train_loss += loss
if total_iters %10 == 0:
log.scalar_summary('train/loss_batch',loss, total_iters)
if total_iters %100 == 0:
log.image_summary('train/left',imgL_crop[0:1],total_iters)
log.image_summary('train/right',imgR_crop[0:1],total_iters)
log.image_summary('train/gt0',disp_crop_L[0:1],total_iters)
log.image_summary('train/entropy',vis['entropy'][0:1],total_iters)
log.histo_summary('train/disparity_hist',vis['output3'], total_iters)
log.histo_summary('train/gt_hist',np.asarray(disp_crop_L), total_iters)
log.image_summary('train/output3',vis['output3'][0:1],total_iters)
log.image_summary('train/output4',vis['output4'][0:1],total_iters)
log.image_summary('train/output5',vis['output5'][0:1],total_iters)
log.image_summary('train/output6',vis['output6'][0:1],total_iters)
total_iters += 1
if (total_iters + 1)%2000==0:
#SAVE
savefilename = args.savemodel+'/'+args.logname+'/finetune_'+str(total_iters)+'.tar'
torch.save({
'iters': total_iters,
'state_dict': model.state_dict(),
'train_loss': total_train_loss/len(TrainImgLoader),
}, savefilename)
log.scalar_summary('train/loss',total_train_loss/len(TrainImgLoader), epoch)
torch.cuda.empty_cache()