当前位置: 首页>>代码示例>>Python>>正文


Python utils.load_vocab方法代码示例

本文整理汇总了Python中utils.load_vocab方法的典型用法代码示例。如果您正苦于以下问题:Python utils.load_vocab方法的具体用法?Python utils.load_vocab怎么用?Python utils.load_vocab使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils.load_vocab方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_vocab [as 别名]
def main(args):

    vocab_list = np.array(utils.load_vocab(args.vocab))

    vocab_size = len(vocab_list)

    config = tf.estimator.RunConfig(model_dir=args.model_dir)
    hparams = utils.create_hparams(
        args, vocab_size, utils.SOS_ID, utils.EOS_ID)

    hparams.decoder.set_hparam('beam_width', args.beam_width)

    model = tf.estimator.Estimator(
        model_fn=las_model_fn,
        config=config,
        params=hparams)

    predictions = model.predict(
        input_fn=lambda: input_fn(
            args.data, args.vocab, num_channels=args.num_channels, batch_size=args.batch_size, num_epochs=1),
        predict_keys='sample_ids')

    if args.beam_width > 0:
        predictions = [vocab_list[y['sample_ids'][:, 0]].tolist() + [utils.EOS]
                       for y in predictions]
    else:
        predictions = [vocab_list[y['sample_ids']].tolist() + [utils.EOS]
                       for y in predictions]

    predictions = [' '.join(y[:y.index(utils.EOS)]) for y in predictions]

    with open(args.save, 'w') as f:
        f.write('\n'.join(predictions)) 
开发者ID:WindQAQ,项目名称:listen-attend-and-spell,代码行数:35,代码来源:infer.py

示例2: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_vocab [as 别名]
def main(args):

    vocab_list = utils.load_vocab(args.vocab)

    vocab_size = len(vocab_list)

    config = tf.estimator.RunConfig(model_dir=args.model_dir)
    hparams = utils.create_hparams(
        args, vocab_size, utils.SOS_ID, utils.EOS_ID)

    model = tf.estimator.Estimator(
        model_fn=las_model_fn,
        config=config,
        params=hparams)

    if args.valid:
        train_spec = tf.estimator.TrainSpec(
            input_fn=lambda: input_fn(
                args.train, args.vocab, num_channels=args.num_channels, batch_size=args.batch_size, num_epochs=args.num_epochs))

        eval_spec = tf.estimator.EvalSpec(
            input_fn=lambda: input_fn(
                args.valid or args.train, args.vocab, num_channels=args.num_channels, batch_size=args.batch_size),
            start_delay_secs=60,
            throttle_secs=args.eval_secs)

        tf.estimator.train_and_evaluate(model, train_spec, eval_spec)
    else:
        model.train(
            input_fn=lambda: input_fn(
                args.train, args.vocab, num_channels=args.num_channels, batch_size=args.batch_size, num_epochs=args.num_epochs)) 
开发者ID:WindQAQ,项目名称:listen-attend-and-spell,代码行数:33,代码来源:train.py

示例3: create_index

# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_vocab [as 别名]
def create_index(self, index_folder, docs_path, add_terms=False):

        print 'Loading Vocab...'
        if not self.vocab:
            self.vocab = utils.load_vocab(prm.vocab_path, prm.n_words)

        os.mkdir(index_folder)

        self.t1 = FieldType()
        self.t1.setStored(True)
        self.t1.setIndexOptions(IndexOptions.DOCS)

        self.t2 = FieldType()
        self.t2.setStored(False)
        self.t2.setIndexOptions(IndexOptions.DOCS_AND_FREQS)

        self.t3 = FieldType()
        self.t3.setStored(True)
        self.t3.setIndexOptions(IndexOptions.NONE)
       
        fsDir = MMapDirectory(Paths.get(index_folder))
        writerConfig = IndexWriterConfig(StandardAnalyzer())
        self.writer = IndexWriter(fsDir, writerConfig)
        print "%d docs in index" % self.writer.numDocs()
        print "Indexing documents..."

        doc_id = 0

        import corpus_hdf5
        corpus = corpus_hdf5.CorpusHDF5(docs_path) 
        for txt in corpus.get_text_iter():
            title = corpus.get_article_title(doc_id)
            self.add_doc(doc_id, title, txt, add_terms)
            if doc_id % 1000 == 0:
                print 'indexing doc', doc_id
            doc_id += 1
                 
        print "Index of %d docs..." % self.writer.numDocs()
        self.writer.close() 
开发者ID:nyu-dl,项目名称:dl4ir-query-reformulator,代码行数:41,代码来源:lucene_search.py

示例4: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_vocab [as 别名]
def train(**kwargs):
    config = Config()
    config.update(**kwargs)
    print('当前设置为:\n', config)
    if config.use_cuda:
        torch.cuda.set_device(config.gpu)
    print('loading corpus')
    vocab = load_vocab(config.vocab)
    label_dic = load_vocab(config.label_file)
    tagset_size = len(label_dic)
    train_data = read_corpus(config.train_file, max_length=config.max_length, label_dic=label_dic, vocab=vocab)
    dev_data = read_corpus(config.dev_file, max_length=config.max_length, label_dic=label_dic, vocab=vocab)

    train_ids = torch.LongTensor([temp.input_id for temp in train_data])
    train_masks = torch.LongTensor([temp.input_mask for temp in train_data])
    train_tags = torch.LongTensor([temp.label_id for temp in train_data])

    train_dataset = TensorDataset(train_ids, train_masks, train_tags)
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=config.batch_size)

    dev_ids = torch.LongTensor([temp.input_id for temp in dev_data])
    dev_masks = torch.LongTensor([temp.input_mask for temp in dev_data])
    dev_tags = torch.LongTensor([temp.label_id for temp in dev_data])

    dev_dataset = TensorDataset(dev_ids, dev_masks, dev_tags)
    dev_loader = DataLoader(dev_dataset, shuffle=True, batch_size=config.batch_size)
    model = BERT_LSTM_CRF(config.bert_path, tagset_size, config.bert_embedding, config.rnn_hidden, config.rnn_layer, dropout_ratio=config.dropout_ratio, dropout1=config.dropout1, use_cuda=config.use_cuda)
    if config.load_model:
        assert config.load_path is not None
        model = load_model(model, name=config.load_path)
    if config.use_cuda:
        model.cuda()
    model.train()
    optimizer = getattr(optim, config.optim)
    optimizer = optimizer(model.parameters(), lr=config.lr, weight_decay=config.weight_decay)
    eval_loss = 10000
    for epoch in range(config.base_epoch):
        step = 0
        for i, batch in enumerate(train_loader):
            step += 1
            model.zero_grad()
            inputs, masks, tags = batch
            inputs, masks, tags = Variable(inputs), Variable(masks), Variable(tags)
            if config.use_cuda:
                inputs, masks, tags = inputs.cuda(), masks.cuda(), tags.cuda()
            feats = model(inputs, masks)
            loss = model.loss(feats, masks,tags)
            loss.backward()
            optimizer.step()
            if step % 50 == 0:
                print('step: {} |  epoch: {}|  loss: {}'.format(step, epoch, loss.item()))
        loss_temp = dev(model, dev_loader, epoch, config)
        if loss_temp < eval_loss:
            save_model(model,epoch) 
开发者ID:chenxiaoyouyou,项目名称:Bert-BiLSTM-CRF-pytorch,代码行数:56,代码来源:main.py


注:本文中的utils.load_vocab方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。