本文整理汇总了Python中utils.load_mnist方法的典型用法代码示例。如果您正苦于以下问题:Python utils.load_mnist方法的具体用法?Python utils.load_mnist怎么用?Python utils.load_mnist使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.load_mnist方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_pca
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def plot_pca():
print('loading data')
X_train, y_train, X_test, y_test = utils.load_mnist()
pca = PCA(n_components=2)
print('transforming training data')
Z_train = pca.fit_transform(X_train)
print('transforming test data')
Z_test = pca.transform(X_test)
plot(Z_train, y_train, Z_test, y_test,
filename='pca.png', title='projected onto principle components')
示例2: plot_autoencoder
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def plot_autoencoder(weightsfile):
print('building model')
layers = model.build_model()
batch_size = 128
print('compiling theano function')
encoder_func = theano_funcs.create_encoder_func(layers)
print('loading weights from %s' % (weightsfile))
model.load_weights([
layers['l_decoder_out'],
layers['l_discriminator_out'],
], weightsfile)
print('loading data')
X_train, y_train, X_test, y_test = utils.load_mnist()
train_datapoints = []
print('transforming training data')
for train_idx in get_batch_idx(X_train.shape[0], batch_size):
X_train_batch = X_train[train_idx]
train_batch_codes = encoder_func(X_train_batch)
train_datapoints.append(train_batch_codes)
test_datapoints = []
print('transforming test data')
for test_idx in get_batch_idx(X_test.shape[0], batch_size):
X_test_batch = X_test[test_idx]
test_batch_codes = encoder_func(X_test_batch)
test_datapoints.append(test_batch_codes)
Z_train = np.vstack(train_datapoints)
Z_test = np.vstack(test_datapoints)
plot(Z_train, y_train, Z_test, y_test,
filename='adversarial_train_val.png',
title='projected onto latent space of autoencoder')
示例3: create_inputs
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def create_inputs():
trX, trY = load_mnist(cfg.dataset, cfg.is_training)
num_pre_threads = cfg.thread_per_gpu*cfg.num_gpu
data_queue = tf.train.slice_input_producer([trX, trY], capacity=64*num_pre_threads)
X, Y = tf.train.shuffle_batch(data_queue, num_threads=num_pre_threads,
batch_size=cfg.batch_size_per_gpu*cfg.num_gpu,
capacity=cfg.batch_size_per_gpu*cfg.num_gpu * 64,
min_after_dequeue=cfg.batch_size_per_gpu*cfg.num_gpu * 32,
allow_smaller_final_batch=False)
return (X, Y)
示例4: run_mnist
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def run_mnist(n_train=None, n_test=None, model_type="normal"):
datasize = {"n_train": n_train, "n_test": n_test}
transformer_params = {
"image_shape": 28,
"filter_shape_l1": 5, "step_shape_l1": 1, "n_l1_output": 8,
"filter_shape_l2": 5, "step_shape_l2": 1, "n_l2_output": 4,
"filter_shape_pooling": 5, "step_shape_pooling": 5
}
ensemble_params = {
"n_estimators" : 40,
"sampling_ratio" : 0.03,
"n_jobs" : -1
}
dataset = utils.load_mnist()
run(dataset, datasize, transformer_params, ensemble_params, model_type)
示例5: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def main(_):
# Load Graph
capsNet = CapsNet(is_training=False)
print('[+] Graph is constructed')
# Load test data
teX, teY = load_mnist(conf.dataset, is_training=False)
# Start session
with capsNet.graph.as_default():
sv = tf.train.Supervisor(logdir=conf.logdir)
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore parameters
checkpoint_path = tf.train.latest_checkpoint(conf.logdir)
sv.saver.restore(sess, checkpoint_path)
print('[+] Graph is restored from ' + checkpoint_path)
# Make results directory
if not os.path.exists('results'):
os.mkdir('results')
reconstruction_err = []
classification_acc = []
for i in range(10000 // conf.batch_size):
start = i * conf.batch_size
end = start + conf.batch_size
# Reconstruction
recon_imgs = sess.run(capsNet.decoded, {capsNet.x: teX[start:end]})
recon_imgs = np.reshape(recon_imgs, (conf.batch_size, -1))
orgin_imgs = np.reshape(teX[start:end], (conf.batch_size, -1))
squared = np.square(recon_imgs - orgin_imgs)
reconstruction_err.append(np.mean(squared))
if i % 5 == 0:
imgs = np.reshape(recon_imgs, (conf.batch_size, 28, 28, 1))
size = 6
save_images(imgs[0:size * size, :], [size, size], 'results/test_%03d.png' % i)
# Classification
cls_result = sess.run(capsNet.preds, {capsNet.x: teX[start:end]})
cls_answer = teY[start:end]
cls_acc = np.mean(np.equal(cls_result, cls_answer).astype(np.float32))
classification_acc.append(cls_acc)
# Print classification accuracy & reconstruction error
print('reconstruction_err : ' + str(np.mean(reconstruction_err)))
print('classification_acc : ' + str(np.mean(classification_acc) * 100))
示例6: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 100
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load mnist
self.data_X, self.data_Y = utils.load_mnist(args.dataset)
self.z_dim = 62
self.y_dim = 10
# fixed noise & condition
self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
for i in range(10):
self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
for j in range(1, self.y_dim):
self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]
temp = torch.zeros((10, 1))
for i in range(self.y_dim):
temp[i, 0] = i
temp_y = torch.zeros((self.sample_num, 1))
for i in range(10):
temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp
self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
if self.gpu_mode:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
else:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
示例7: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def __init__(self, args):
# parameters
self.epoch = args.epoch
self.sample_num = 100
self.batch_size = args.batch_size
self.save_dir = args.save_dir
self.result_dir = args.result_dir
self.dataset = args.dataset
self.log_dir = args.log_dir
self.gpu_mode = args.gpu_mode
self.model_name = args.gan_type
# networks init
self.G = generator(self.dataset)
self.D = discriminator(self.dataset)
self.G_optimizer = optim.Adam(self.G.parameters(), lr=args.lrG, betas=(args.beta1, args.beta2))
self.D_optimizer = optim.Adam(self.D.parameters(), lr=args.lrD, betas=(args.beta1, args.beta2))
if self.gpu_mode:
self.G.cuda()
self.D.cuda()
self.BCE_loss = nn.BCELoss().cuda()
self.CE_loss = nn.CrossEntropyLoss().cuda()
else:
self.BCE_loss = nn.BCELoss()
self.CE_loss = nn.CrossEntropyLoss()
print('---------- Networks architecture -------------')
utils.print_network(self.G)
utils.print_network(self.D)
print('-----------------------------------------------')
# load mnist
self.data_X, self.data_Y = utils.load_mnist(args.dataset)
self.z_dim = 62
self.y_dim = 10
# fixed noise & condition
self.sample_z_ = torch.zeros((self.sample_num, self.z_dim))
for i in range(10):
self.sample_z_[i*self.y_dim] = torch.rand(1, self.z_dim)
for j in range(1, self.y_dim):
self.sample_z_[i*self.y_dim + j] = self.sample_z_[i*self.y_dim]
temp = torch.zeros((10, 1))
for i in range(self.y_dim):
temp[i, 0] = i
temp_y = torch.zeros((self.sample_num, 1))
for i in range(10):
temp_y[i*self.y_dim: (i+1)*self.y_dim] = temp
self.sample_y_ = torch.zeros((self.sample_num, self.y_dim))
self.sample_y_.scatter_(1, temp_y.type(torch.LongTensor), 1)
if self.gpu_mode:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_.cuda(), volatile=True), Variable(self.sample_y_.cuda(), volatile=True)
else:
self.sample_z_, self.sample_y_ = Variable(self.sample_z_, volatile=True), Variable(self.sample_y_, volatile=True)
示例8: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_mnist [as 别名]
def __init__(self, seq_len, batch_size, dataset='mnist', set='train',
rng=None, infinite=True, digits=None):
if dataset == 'fashion_mnist':
(x_train, y_train), (x_test, y_test) = utils.load_fashion_mnist()
if set == 'train':
self.x = x_train
self.y = y_train
else:
self.x = x_test
self.y = y_test
elif dataset == 'mnist':
(x_train, y_train), (x_test, y_test) = utils.load_mnist()
if set == 'train':
self.x = x_train
self.y = y_train
elif set == 'test':
self.x = x_test
self.y = y_test
elif dataset == 'cifar10':
self.x, self.y = utils.load_cifar('data/cifar', subset=set)
self.x = np.transpose(self.x, (0, 2, 3, 1)) # (N,3,32,32) -> (N,32,32,3)
self.x = np.float32(self.x)
self.img_shape = self.x.shape[1:]
self.input_dim = np.prod(self.img_shape)
else:
raise ValueError('wrong dataset name')
if dataset == 'mnist' or dataset == 'fashion_mnist':
self.input_dim = self.x.shape[-1]
self.img_shape = (int(np.sqrt(self.input_dim)), int(np.sqrt(self.input_dim)), 1)
self.x = np.reshape(self.x, (self.x.shape[0],) + self.img_shape)
self.x = np.float32(self.x)
self.classes = np.unique(self.y)
self.n_classes = len(self.classes)
self.y2idxs = {}
self.nsamples = 0
for i in list(self.classes):
self.y2idxs[i] = np.where(self.y == i)[0]
self.nsamples += len(self.y2idxs[i])
self.batch_size = batch_size
self.seq_len = seq_len
self.rng = np.random.RandomState(42) if not rng else rng
self.infinite = infinite
self.digits = digits if digits is not None else np.arange(self.n_classes)
print(set, 'dataset size:', self.x.shape)
print(set, 'N classes', self.n_classes)
print(set, 'min, max', np.min(self.x), np.max(self.x))
print(set, 'nsamples', self.nsamples)
print(set, 'digits', self.digits)
print('--------------')