本文整理汇总了Python中utils.load_image方法的典型用法代码示例。如果您正苦于以下问题:Python utils.load_image方法的具体用法?Python utils.load_image怎么用?Python utils.load_image使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.load_image方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: stylize
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def stylize(args):
device = torch.device("cuda" if args.cuda else "cpu")
content_image = utils.load_image(args.content_image, scale=args.content_scale)
content_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255))
])
content_image = content_transform(content_image)
content_image = content_image.unsqueeze(0).to(device)
with torch.no_grad():
style_model = TransformerNet(style_num=args.style_num)
state_dict = torch.load(args.model)
style_model.load_state_dict(state_dict)
style_model.to(device)
output = style_model(content_image, style_id = [args.style_id]).cpu()
utils.save_image('output/'+args.output_image+'_style'+str(args.style_id)+'.jpg', output[0])
示例2: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def main():
parser = build_parser()
options = parser.parse_args()
check_opts(options)
network = options.network_path
if not os.path.isdir(network):
parser.error("Network %s does not exist." % network)
content_image = utils.load_image(options.content)
reshaped_content_height = (content_image.shape[0] - content_image.shape[0] % 4)
reshaped_content_width = (content_image.shape[1] - content_image.shape[1] % 4)
reshaped_content_image = content_image[:reshaped_content_height, :reshaped_content_width, :]
reshaped_content_image = np.ndarray.reshape(reshaped_content_image, (1,) + reshaped_content_image.shape)
prediction = ffwd(reshaped_content_image, network)
utils.save_image(prediction, options.output_path)
示例3: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def main():
parser = build_parser()
options = parser.parse_args()
check_opts(options)
style_image = utils.load_image(options.style)
style_image = np.ndarray.reshape(style_image, (1,) + style_image.shape)
content_targets = utils.get_files(options.train_path)
content_shape = utils.load_image(content_targets[0]).shape
device = '/gpu:0' if options.use_gpu else '/cpu:0'
style_transfer = FastStyleTransfer(
vgg_path=VGG_PATH,
style_image=style_image,
content_shape=content_shape,
content_weight=options.content_weight,
style_weight=options.style_weight,
tv_weight=options.style_weight,
batch_size=options.batch_size,
device=device)
for iteration, network, first_image, losses in style_transfer.train(
content_training_images=content_targets,
learning_rate=options.learning_rate,
epochs=options.epochs,
checkpoint_iterations=options.checkpoint_iterations
):
print_losses(losses)
saver = tf.train.Saver()
if (iteration % 100 == 0):
saver.save(network, opts.save_path + '/fast_style_network.ckpt')
saver.save(network, opts.save_path + '/fast_style_network.ckpt')
示例4: _load_batch
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def _load_batch(self, image_paths):
return np.array([utils.load_image(img_path) for j, img_path in enumerate(image_paths)])
示例5: feature_extraction_images
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def feature_extraction_images(model, cores, batch_sz, image_list, output_path):
"""
Function that extracts the intermediate CNN features
of each image in a provided image list.
Args:
model: CNN network
cores: CPU cores for the parallel video loading
batch_sz: batch size fed to the CNN network
image_list: list of image to extract features
output_path: path to store video features
"""
images = [image.strip() for image in open(image_list).readlines()]
print '\nNumber of images: ', len(images)
print 'Storage directory: ', output_path
print 'CPU cores: ', cores
print 'Batch size: ', batch_sz
print '\nFeature Extraction Process'
print '=========================='
pool = Pool(cores)
batches = len(images)/batch_sz + 1
features = np.zeros((len(images), model.final_sz))
for batch in tqdm(xrange(batches), mininterval=1.0, unit='batches'):
# load images in parallel
future = []
for image in images[batch * batch_sz: (batch+1) * batch_sz]:
future += [pool.apply_async(load_image, args=[image, model.desired_size])]
image_tensor = []
for f in future:
image_tensor += [f.get()]
# extract features
features[int(batch * batch_sz): int((batch + 1) * batch_sz)] = \
model.extract(np.array(image_tensor), batch_sz)
# save features
np.save(os.path.join(output_path, '{}_features'.format(model.net_name)), features)
示例6: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# load content image
content_image = utils.load_image(args.content, max_size=args.max_size)
# open session
soft_config = tf.ConfigProto(allow_soft_placement=True)
soft_config.gpu_options.allow_growth = True # to deal with large image
sess = tf.Session(config=soft_config)
# build the graph
transformer = style_transfer_tester.StyleTransferTester(session=sess,
model_path=args.style_model,
content_image=content_image,
)
# execute the graph
start_time = time.time()
output_image = transformer.test()
end_time = time.time()
# save result
utils.save_image(output_image, args.output)
# report execution time
shape = content_image.shape #(batch, width, height, channel)
print('Execution time for a %d x %d image : %f msec' % (shape[0], shape[1], 1000.*float(end_time - start_time)/60))
示例7: stylize
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def stylize(args):
device = torch.device("cuda" if args.cuda else "cpu")
content_image = utils.load_image(args.content_image, scale=args.content_scale)
content_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255))
])
content_image = content_transform(content_image)
content_image = content_image.unsqueeze(0).to(device)
if args.model.endswith(".onnx"):
output = stylize_onnx_caffe2(content_image, args)
else:
with torch.no_grad():
style_model = TransformerNet()
state_dict = torch.load(args.model)
# remove saved deprecated running_* keys in InstanceNorm from the checkpoint
for k in list(state_dict.keys()):
if re.search(r'in\d+\.running_(mean|var)$', k):
del state_dict[k]
style_model.load_state_dict(state_dict)
style_model.to(device)
if args.export_onnx:
assert args.export_onnx.endswith(".onnx"), "Export model file should end with .onnx"
output = torch.onnx._export(style_model, content_image, args.export_onnx).cpu()
else:
output = style_model(content_image).cpu()
utils.save_image(args.output_image, output[0])
示例8: get_image
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def get_image(self, idx):
img_filename = os.path.join(self.image_dir, '%06d.jpg'%(idx))
return utils.load_image(img_filename)
示例9: sample_image_seq
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def sample_image_seq(dataset_name, filename_pattern, max_length, keyframes):
metadata = DATASET_TO_METADATA[dataset_name]
im_height = metadata['im_height']
im_width = metadata['im_width']
image_seq = np.zeros((max_length, im_height, im_width, 3), dtype=np.float32)
assert (keyframes.shape[0] == max_length)
#print('loading images: %s' % filename_pattern)
for i in xrange(max_length):
#print('loading images [%02d]: %s' % (i, filename_pattern))
image_seq[i] = utils.load_image(filename_pattern.replace('*', '%05d' % keyframes[i]))
return image_seq
示例10: stylize
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def stylize(args):
device = torch.device("cuda" if args.cuda else "cpu")
content_transform = transforms.Compose([transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255))])
content_image = utils.load_image(args.content_image, scale=args.content_scale)
content_image = content_transform(content_image)
content_image = content_image.unsqueeze(0).to(device)
with torch.no_grad():
style_model = torch.load(args.model)
style_model.to(device)
output = style_model(content_image).cpu()
utils.save_image(args.output_image, output[0])
示例11: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def __init__(self, content_layer_ids, style_layer_ids, content_images, style_image, session, net, num_epochs,
batch_size, content_weight, style_weight, tv_weight, learn_rate, save_path, check_period, test_image,
max_size):
self.net = net
self.sess = session
# sort layers info
self.CONTENT_LAYERS = collections.OrderedDict(sorted(content_layer_ids.items()))
self.STYLE_LAYERS = collections.OrderedDict(sorted(style_layer_ids.items()))
# input images
self.x_list = content_images
mod = len(content_images) % batch_size
self.x_list = self.x_list[:-mod]
self.y_s0 = style_image
self.content_size = len(self.x_list)
# parameters for optimization
self.num_epochs = num_epochs
self.content_weight = content_weight
self.style_weight = style_weight
self.tv_weight = tv_weight
self.learn_rate = learn_rate
self.batch_size = batch_size
self.check_period = check_period
# path for model to be saved
self.save_path = save_path
# image transform network
self.transform = transform.Transform()
self.tester = transform.Transform('test')
# build graph for style transfer
self._build_graph()
# test during training
if test_image is not None:
self.TEST = True
# load content image
self.test_image = utils.load_image(test_image, max_size=max_size)
# build graph
self.x_test = tf.placeholder(tf.float32, shape=self.test_image.shape, name='test_input')
self.xi_test = tf.expand_dims(self.x_test, 0) # add one dim for batch
# result image from transform-net
self.y_hat_test = self.tester.net(
self.xi_test / 255.0) # please build graph for train first. tester.net reuses variables.
else:
self.TEST = False
示例12: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import load_image [as 别名]
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# initiate VGG19 model
model_file_path = args.vgg_model + '/' + vgg19.MODEL_FILE_NAME
vgg_net = vgg19.VGG19(model_file_path)
# get file list for training
content_images = utils.get_files(args.trainDB_path)
# load style image
style_image = utils.load_image(args.style)
# create a map for content layers info
CONTENT_LAYERS = {}
for layer, weight in zip(args.content_layers,args.content_layer_weights):
CONTENT_LAYERS[layer] = weight
# create a map for style layers info
STYLE_LAYERS = {}
for layer, weight in zip(args.style_layers, args.style_layer_weights):
STYLE_LAYERS[layer] = weight
# open session
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
# build the graph for train
trainer = style_transfer_trainer.StyleTransferTrainer(session=sess,
content_layer_ids=CONTENT_LAYERS,
style_layer_ids=STYLE_LAYERS,
content_images=content_images,
style_image=add_one_dim(style_image),
net=vgg_net,
num_epochs=args.num_epochs,
batch_size=args.batch_size,
content_weight=args.content_weight,
style_weight=args.style_weight,
tv_weight=args.tv_weight,
learn_rate=args.learn_rate,
save_path=args.output,
check_period=args.checkpoint_every,
test_image=args.test,
max_size=args.max_size,
)
# launch the graph in a session
trainer.train()
# close session
sess.close()