本文整理汇总了Python中utils.load_data.load_gt_roidb方法的典型用法代码示例。如果您正苦于以下问题:Python load_data.load_gt_roidb方法的具体用法?Python load_data.load_gt_roidb怎么用?Python load_data.load_gt_roidb使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.load_data
的用法示例。
在下文中一共展示了load_data.load_gt_roidb方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_rcnn
# 需要导入模块: from utils import load_data [as 别名]
# 或者: from utils.load_data import load_gt_roidb [as 别名]
def test_rcnn(imageset, year, root_path, devkit_path, prefix, epoch, ctx, vis=False, has_rpn=True, proposal='rpn',
end2end=False):
# load symbol and testing data
if has_rpn:
sym = get_vgg_test()
config.TEST.HAS_RPN = True
config.TEST.RPN_PRE_NMS_TOP_N = 6000
config.TEST.RPN_POST_NMS_TOP_N = 300
voc, roidb = load_gt_roidb(imageset, year, root_path, devkit_path)
else:
sym = get_vgg_rcnn_test()
voc, roidb = eval('load_test_' + proposal + '_roidb')(imageset, year, root_path, devkit_path)
# get test data iter
test_data = ROIIter(roidb, batch_size=1, shuffle=False, mode='test')
# load model
args, auxs, _ = load_param(prefix, epoch, convert=True, ctx=ctx)
# detect
detector = Detector(sym, ctx, args, auxs)
pred_eval(detector, test_data, voc, vis=vis)
示例2: test_rpn
# 需要导入模块: from utils import load_data [as 别名]
# 或者: from utils.load_data import load_gt_roidb [as 别名]
def test_rpn(image_set, year, root_path, devkit_path, prefix, epoch, ctx, vis=False):
# load symbol
sym = get_vgg_rpn_test()
# load testing data
voc, roidb = load_gt_roidb(image_set, year, root_path, devkit_path)
test_data = ROIIter(roidb, batch_size=1, shuffle=False, mode='test')
# load model
args, auxs = load_param(prefix, epoch, convert=True, ctx=ctx)
# start testing
detector = Detector(sym, ctx, args, auxs)
imdb_boxes = generate_detections(detector, test_data, voc, vis=vis)
voc.evaluate_recall(roidb, candidate_boxes=imdb_boxes)
示例3: main
# 需要导入模块: from utils import load_data [as 别名]
# 或者: from utils.load_data import load_gt_roidb [as 别名]
def main():
logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############')
init_config()
if "resnet" in args.pretrained:
sym = resnet_50(num_class=args.num_classes, bn_mom=args.bn_mom, bn_global=True, is_train=True) # consider background
else:
sym = get_faster_rcnn(num_classes=args.num_classes) # consider background
feat_sym = sym.get_internals()['rpn_cls_score_output']
# setup for multi-gpu
ctx = [mx.gpu(int(i)) for i in args.gpu_ids.split(',')]
config.TRAIN.IMS_PER_BATCH *= len(ctx)
max_data_shape, max_label_shape = get_max_shape(feat_sym)
# data
# voc, roidb = load_gt_roidb_from_list(args.dataset_name, args.lst, args.dataset_root,
# args.outdata_path, flip=not args.no_flip)
voc, roidb = load_gt_roidb(args.image_set, args.year, args.root_path, args.devkit_path, flip=not args.no_flip)
train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, anchor_scales=(4, 8, 16, 32),
shuffle=not args.no_shuffle, mode='train', ctx=ctx, need_mean=args.need_mean)
# model
args_params, auxs_params, _ = load_param(args.pretrained, args.load_epoch, convert=True)
if not args.resume:
args_params, auxs_params= init_model(args_params, auxs_params, train_data, sym, args.pretrained)
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
batch_end_callback = Speedometer(train_data.batch_size, frequent=args.frequent)
epoch_end_callback = do_checkpoint(args.prefix)
optimizer_params = {'momentum': args.mom,
'wd': args.wd,
'learning_rate': args.lr,
# 'lr_scheduler': WarmupScheduler(args.factor_step, 0.1, warmup_lr=0.1*args.lr, warmup_step=200) \
# if not args.resume else mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1),
'lr_scheduler': mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), # seems no need warm up
'clip_gradient': 1.0,
'rescale_grad': 1.0}
if "resnet" in args.pretrained:
# only consider resnet-50 here
fixed_param_prefix = ['conv0', 'stage1', 'stage2', 'bn_data', 'bn0']
else:
fixed_param_prefix = ['conv1', 'conv2', 'conv3']
# train
mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx,
max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
fixed_param_prefix=fixed_param_prefix)
mod.fit(train_data, eval_metric=metric(), epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore=args.kv_store,
optimizer='sgd', optimizer_params=optimizer_params, arg_params=args_params, aux_params=auxs_params,
begin_epoch=args.load_epoch, num_epoch=args.num_epoch)