本文整理汇总了Python中utils.linear方法的典型用法代码示例。如果您正苦于以下问题:Python utils.linear方法的具体用法?Python utils.linear怎么用?Python utils.linear使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.linear方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import linear [as 别名]
def __init__(self, x_bxu, z_size, name, var_min=0.0):
"""Create an input dependent diagonal Gaussian distribution.
Args:
x: The input tensor from which the mean and variance are computed,
via a linear transformation of x. I.e.
mu = Wx + b, log(var) = Mx + c
z_size: The size of the distribution.
name: The name to prefix to learned variables.
var_min (optional): Minimal variance allowed. This is an additional
way to control the amount of information getting through the stochastic
layer.
"""
size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size])
self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name+"/mean"))
logvar_bxn = linear(x_bxu, z_size, name=(name+"/logvar"))
if var_min > 0.0:
logvar_bxn = tf.log(tf.exp(logvar_bxn) + var_min)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(size_bxn)
self.noise_bxn.set_shape([None, z_size])
self.sample_bxn = mean_bxn + tf.exp(0.5 * logvar_bxn) * noise_bxn
示例2: __call__
# 需要导入模块: import utils [as 别名]
# 或者: from utils import linear [as 别名]
def __call__(self, inputs, state, scope=None):
"""Gated recurrent unit (GRU) function.
Args:
inputs: A 2D batch x input_dim tensor of inputs.
state: The previous state from the last time step.
scope (optional): TF variable scope for defined GRU variables.
Returns:
A tuple (state, state), where state is the newly computed state at time t.
It is returned twice to respect an interface that works for LSTMs.
"""
x = inputs
h = state
if inputs is not None:
xh = tf.concat(axis=1, values=[x, h])
else:
xh = h
with tf.variable_scope(scope or type(self).__name__): # "GRU"
with tf.variable_scope("Gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
r, u = tf.split(axis=1, num_or_size_splits=2, value=linear(xh,
2 * self._num_units,
alpha=self._weight_scale,
name="xh_2_ru",
collections=self._collections))
r, u = tf.sigmoid(r), tf.sigmoid(u + self._forget_bias)
with tf.variable_scope("Candidate"):
xrh = tf.concat(axis=1, values=[x, r * h])
c = tf.tanh(linear(xrh, self._num_units, name="xrh_2_c",
collections=self._collections))
new_h = u * h + (1 - u) * c
new_h = tf.clip_by_value(new_h, -self._clip_value, self._clip_value)
return new_h, new_h
示例3: apply_model_semi
# 需要导入模块: import utils [as 别名]
# 或者: from utils import linear [as 别名]
def apply_model_semi(img_unsup, img_sup, is_training, outputs, **kw):
"""Passes `img_unsup` and/or `img_sup` through the model.
Args:
img_unsup: The unsupervised input, could be None.
img_sup: The supervised input, could be None.
is_training: Train or test mode?
outputs: A dict-like of {name: number} defining the desired output layers
of the network. A linear layer with `number` outputs is added for each
entry, with the given `name`.
**kw: Extra keyword-args to be passed to `net()`.
Returns:
end_points: A dictionary of {name: tensor} mappings, partially dependent on
which network is used. Additional entries are present for all entries in
`outputs` and named accordingly.
If both `img_unsup` and `img_sup` is given, every entry in `end_points`
comes with two additional entries suffixed by "_unsup" and "_sup", which
corresponds to the parts corresponding to the respective inputs.
"""
# If both inputs are given, we concat them along the batch dimension.
if img_unsup is not None and img_sup is not None:
img_all = tf.concat([img_unsup, img_sup], axis=0)
elif img_unsup is not None:
img_all, split_idx = img_unsup, None
elif img_sup is not None:
img_all, split_idx = img_sup, None
else:
assert False, 'Either `img_unsup` or `img_sup` needs to be passed.'
net = model_utils.get_net()
_, end_points = net(img_all, is_training, spatial_squeeze=False, **kw)
# TODO(xzhai): Try adding batch norm here.
pre_logits = end_points['pre_logits']
for name, nout in outputs.items():
end_points[name] = utils.linear(pre_logits, nout, name)
# Now, if both inputs were given, here we loop over all end_points, including
# the final output we're usually interested in, and split them for
# conveninece of the caller.
if img_unsup is not None and img_sup is not None:
split_idx = img_unsup.get_shape().as_list()[0]
for name, val in end_points.copy().items():
end_points[name + '_unsup'] = val[:split_idx]
end_points[name + '_sup'] = val[split_idx:]
elif img_unsup is not None:
for name, val in end_points.copy().items():
end_points[name + '_unsup'] = val
elif img_sup is not None:
for name, val in end_points.copy().items():
end_points[name + '_sup'] = val
else:
raise ValueError('You must set at least one of {img_unsup, img_unsup}.')
return end_points