当前位置: 首页>>代码示例>>Python>>正文


Python image.transform_inverse方法代码示例

本文整理汇总了Python中utils.image.transform_inverse方法的典型用法代码示例。如果您正苦于以下问题:Python image.transform_inverse方法的具体用法?Python image.transform_inverse怎么用?Python image.transform_inverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils.image的用法示例。


在下文中一共展示了image.transform_inverse方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: vis_all_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def vis_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-3):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import matplotlib.pyplot as plt
    import random
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    plt.imshow(im)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.random(), random.random(), random.random())  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                 bbox[2] - bbox[0],
                                 bbox[3] - bbox[1], fill=False,
                                 edgecolor=color, linewidth=3.5)
            plt.gca().add_patch(rect)
            plt.gca().text(bbox[0], bbox[1] - 2,
                           '{:s} {:.3f}'.format(name, score),
                           bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white')
    plt.show() 
开发者ID:i-pan,项目名称:kaggle-rsna18,代码行数:34,代码来源:tester.py

示例2: draw_all_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im 
开发者ID:i-pan,项目名称:kaggle-rsna18,代码行数:32,代码来源:tester.py

示例3: vis_all_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def vis_all_detection(im_array, detections, class_names, scale, cfg, threshold=0.1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import matplotlib.pyplot as plt
    import random
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    plt.imshow(im)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.random(), random.random(), random.random())  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                 bbox[2] - bbox[0],
                                 bbox[3] - bbox[1], fill=False,
                                 edgecolor=color, linewidth=3.5)
            plt.gca().add_patch(rect)
            plt.gca().text(bbox[0], bbox[1] - 2,
                           '{:s} {:.3f}'.format(name, score),
                           bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white')
    plt.show() 
开发者ID:wangshy31,项目名称:MANet_for_Video_Object_Detection,代码行数:34,代码来源:tester.py

示例4: draw_all_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def draw_all_detection(im_array, detections, class_names, scale, cfg, threshold=0.1):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im 
开发者ID:wangshy31,项目名称:MANet_for_Video_Object_Detection,代码行数:32,代码来源:tester.py

示例5: vis_all_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def vis_all_detection(im_array, detections, class_names, scale, cfg, threshold=1e-4):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import matplotlib.pyplot as plt
    import random
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    plt.imshow(im)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.random(), random.random(), random.random())  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:4] * scale
            score = det[-1]
            if score < threshold:
                continue
            rect = plt.Rectangle((bbox[0], bbox[1]),
                                 bbox[2] - bbox[0],
                                 bbox[3] - bbox[1], fill=False,
                                 edgecolor=color, linewidth=3.5)
            plt.gca().add_patch(rect)
            plt.gca().text(bbox[0], bbox[1] - 2,
                           '{:s} {:.3f}'.format(name, score),
                           bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white')
    plt.show() 
开发者ID:msracver,项目名称:Deep-Feature-Flow,代码行数:34,代码来源:tester.py

示例6: draw_all_poly_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def draw_all_poly_detection(im_array, detections, class_names, scale, cfg, threshold=0.2):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    if DEBUG:
        class_names = ['__background__', 'fg']
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        dets = detections[j]
        for det in dets:
            bbox = det[:8] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            # draw first point
            cv2.circle(im, (bbox[0], bbox[1]), 3, (0, 0, 255), -1)
            for i in range(3):
                cv2.line(im, (bbox[i * 2], bbox[i * 2 + 1]), (bbox[(i+1) * 2], bbox[(i+1) * 2 + 1]), color=color, thickness=2)
            cv2.line(im, (bbox[6], bbox[7]), (bbox[0], bbox[1]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im 
开发者ID:dingjiansw101,项目名称:RoITransformer_DOTA,代码行数:38,代码来源:tester.py

示例7: draw_all_poly_detection

# 需要导入模块: from utils import image [as 别名]
# 或者: from utils.image import transform_inverse [as 别名]
def draw_all_poly_detection(im_array, detections, class_names, scale, cfg, threshold=0.2):
    """
    visualize all detections in one image
    :param im_array: [b=1 c h w] in rgb
    :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ]
    :param class_names: list of names in imdb
    :param scale: visualize the scaled image
    :return:
    """
    # pdb.set_trace()
    import cv2
    import random
    color_white = (255, 255, 255)
    im = image.transform_inverse(im_array, cfg.network.PIXEL_MEANS)
    # change to bgr
    im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
    for j, name in enumerate(class_names):
        if name == '__background__':
            continue
        color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256))  # generate a random color
        try:
            dets = detections[j]
        except:
            pdb.set_trace()
        for det in dets:
            bbox = det[:8] * scale
            score = det[-1]
            if score < threshold:
                continue
            bbox = map(int, bbox)
            # draw first point
            cv2.circle(im, (bbox[0], bbox[1]), 3, (0, 0, 255), -1)
            for i in range(3):
                cv2.line(im, (bbox[i * 2], bbox[i * 2 + 1]), (bbox[(i+1) * 2], bbox[(i+1) * 2 + 1]), color=color, thickness=2)
            cv2.line(im, (bbox[6], bbox[7]), (bbox[0], bbox[1]), color=color, thickness=2)
            cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10),
                        color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5)
    return im 
开发者ID:dingjiansw101,项目名称:RoITransformer_DOTA,代码行数:40,代码来源:demo.py


注:本文中的utils.image.transform_inverse方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。