当前位置: 首页>>代码示例>>Python>>正文


Python utils.graph_reader方法代码示例

本文整理汇总了Python中utils.graph_reader方法的典型用法代码示例。如果您正苦于以下问题:Python utils.graph_reader方法的具体用法?Python utils.graph_reader怎么用?Python utils.graph_reader使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils.graph_reader方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, reading data.
    Doing sparsification, fitting a GWNN and saving the logs.
    """
    args = parameter_parser()
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    features = feature_reader(args.features_path)
    target = target_reader(args.target_path)
    sparsifier = WaveletSparsifier(graph, args.scale, args.approximation_order, args.tolerance)
    sparsifier.calculate_all_wavelets()
    trainer = GWNNTrainer(args, sparsifier, features, target)
    trainer.fit()
    trainer.score()
    save_logs(args, trainer.logs) 
开发者ID:benedekrozemberczki,项目名称:GraphWaveletNeuralNetwork,代码行数:18,代码来源:main.py

示例2: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, reading data.
    Fitting an NGCN and scoring the model.
    """
    args = parameter_parser()
    torch.manual_seed(args.seed)
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    features = feature_reader(args.features_path)
    target = target_reader(args.target_path)
    trainer = Trainer(args, graph, features, target, True)
    trainer.fit()
    if args.model == "mixhop":
        trainer.evaluate_architecture()
        args = trainer.reset_architecture()
        trainer = Trainer(args, graph, features, target, False)
        trainer.fit() 
开发者ID:benedekrozemberczki,项目名称:MixHop-and-N-GCN,代码行数:20,代码来源:main.py

示例3: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, creating EgoNets.
    Creating a partition of the persona graph. Saving the memberships.
    """
    args = parameter_parser()
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    splitter = EgoNetSplitter(args.resolution)
    splitter.fit(graph)
    membership_saver(args.output_path, splitter.overlapping_partitions) 
开发者ID:benedekrozemberczki,项目名称:EgoSplitting,代码行数:13,代码来源:main.py

示例4: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters.
    Reading data, embedding base graph, creating persona graph and learning a splitter.
    Saving the persona mapping and the embedding.
    """
    args = parameter_parser()
    torch.manual_seed(args.seed)
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    trainer = SplitterTrainer(graph, args)
    trainer.fit()
    trainer.save_embedding()
    trainer.save_persona_graph_mapping() 
开发者ID:benedekrozemberczki,项目名称:Splitter,代码行数:16,代码来源:main.py

示例5: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, reading data, graph decomposition, fitting a ClusterGCN and scoring the model.
    """
    args = parameter_parser()
    torch.manual_seed(args.seed)
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    features = feature_reader(args.features_path)
    target = target_reader(args.target_path)
    clustering_machine = ClusteringMachine(args, graph, features, target)
    clustering_machine.decompose()
    gcn_trainer = ClusterGCNTrainer(args, clustering_machine)
    gcn_trainer.train()
    gcn_trainer.test() 
开发者ID:benedekrozemberczki,项目名称:ClusterGCN,代码行数:17,代码来源:main.py

示例6: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, reading data, fitting an APPNP/PPNP and scoring the model.
    """
    args = parameter_parser()
    torch.manual_seed(args.seed)
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    features = feature_reader(args.features_path)
    target = target_reader(args.target_path)
    trainer = APPNPTrainer(args, graph, features, target)
    trainer.fit() 
开发者ID:benedekrozemberczki,项目名称:APPNP,代码行数:14,代码来源:main.py

示例7: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import graph_reader [as 别名]
def main():
    """
    Parsing command line parameters, reading data, fitting EdMot and scoring the model.
    """
    args = parameter_parser()
    tab_printer(args)
    graph = graph_reader(args.edge_path)
    model = EdMot(graph, args.components, args.cutoff)
    memberships = model.fit()
    membership_saver(args.membership_path, memberships) 
开发者ID:benedekrozemberczki,项目名称:EdMot,代码行数:12,代码来源:main.py


注:本文中的utils.graph_reader方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。