本文整理汇总了Python中utils.get_models方法的典型用法代码示例。如果您正苦于以下问题:Python utils.get_models方法的具体用法?Python utils.get_models怎么用?Python utils.get_models使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.get_models方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_args
# 需要导入模块: import utils [as 别名]
# 或者: from utils import get_models [as 别名]
def get_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--dexp', help='root experiment folder', default='exp')
parser.add_argument('--model', help='which model to use', default='glad', choices=get_models())
parser.add_argument('--epoch', help='max epoch to run for', default=50, type=int)
parser.add_argument('--demb', help='word embedding size', default=400, type=int)
parser.add_argument('--dhid', help='hidden state size', default=200, type=int)
parser.add_argument('--batch_size', help='batch size', default=50, type=int)
parser.add_argument('--lr', help='learning rate', default=1e-3, type=float)
parser.add_argument('--stop', help='slot to early stop on', default='joint_goal')
parser.add_argument('--resume', help='save directory to resume from')
parser.add_argument('-n', '--nick', help='nickname for model', default='default')
parser.add_argument('--seed', default=42, help='random seed', type=int)
parser.add_argument('--test', action='store_true', help='run in evaluation only mode')
parser.add_argument('--gpu', type=int, help='which GPU to use')
parser.add_argument('--dropout', nargs='*', help='dropout rates', default=['emb=0.2', 'local=0.2', 'global=0.2'])
args = parser.parse_args()
args.dout = os.path.join(args.dexp, args.model, args.nick)
args.dropout = {d.split('=')[0]: float(d.split('=')[1]) for d in args.dropout}
if not os.path.isdir(args.dout):
os.makedirs(args.dout)
return args
示例2: test_get_models
# 需要导入模块: import utils [as 别名]
# 或者: from utils import get_models [as 别名]
def test_get_models(self):
with tempfile.TemporaryDirectory() as models_dir:
model1 = '000013-model.meta'
model2 = '000017-model.meta'
f1 = open(os.path.join(models_dir, model1), 'w')
f1.close()
f2 = open(os.path.join(models_dir, model2), 'w')
f2.close()
model_nums_names = utils.get_models(models_dir)
self.assertEqual(len(model_nums_names), 2)
self.assertEqual(model_nums_names[0], (13, '000013-model'))
self.assertEqual(model_nums_names[1], (17, '000017-model'))
示例3: validate
# 需要导入模块: import utils [as 别名]
# 或者: from utils import get_models [as 别名]
def validate(trained_models_dir, holdout_dir, estimator_model_dir, params):
"""Validate the latest model on the holdout dataset.
Args:
trained_models_dir: Directories where the completed generations/models are.
holdout_dir: Directories where holdout data are.
estimator_model_dir: tf.estimator model directory.
params: An object of hyperparameters for the model.
"""
model_num, _ = utils.get_latest_model(trained_models_dir)
# Get the holdout game data
nums_names = utils.get_models(trained_models_dir)
# Model N was trained on games up through model N-1, so the validation set
# should only be for models through N-1 as well, thus the (model_num) term.
models = [num_name for num_name in nums_names if num_name[0] < model_num]
# pair is a tuple of (model_num, model_name), like (13, 000013-modelname)
holdout_dirs = [os.path.join(holdout_dir, pair[1])
for pair in models[-params.holdout_generation:]]
tf_records = []
with utils.logged_timer('Building lists of holdout files'):
for record_dir in holdout_dirs:
if os.path.exists(record_dir): # make sure holdout dir exists
tf_records.extend(
tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX)))
print('The length of tf_records is {}.'.format(len(tf_records)))
first_tf_record = os.path.basename(tf_records[0])
last_tf_record = os.path.basename(tf_records[-1])
with utils.logged_timer('Validating from {} to {}'.format(
first_tf_record, last_tf_record)):
dualnet.validate(estimator_model_dir, tf_records, params)
示例4: validate
# 需要导入模块: import utils [as 别名]
# 或者: from utils import get_models [as 别名]
def validate(trained_models_dir, holdout_dir, estimator_model_dir, params):
"""Validate the latest model on the holdout dataset.
Args:
trained_models_dir: Directories where the completed generations/models are.
holdout_dir: Directories where holdout data are.
estimator_model_dir: tf.estimator model directory.
params: A MiniGoParams instance of hyperparameters for the model.
"""
model_num, _ = utils.get_latest_model(trained_models_dir)
# Get the holdout game data
nums_names = utils.get_models(trained_models_dir)
# Model N was trained on games up through model N-1, so the validation set
# should only be for models through N-1 as well, thus the (model_num) term.
models = [num_name for num_name in nums_names if num_name[0] < model_num]
# pair is a tuple of (model_num, model_name), like (13, 000013-modelname)
holdout_dirs = [os.path.join(holdout_dir, pair[1])
for pair in models[-params.holdout_generation:]]
tf_records = []
with utils.logged_timer('Building lists of holdout files'):
for record_dir in holdout_dirs:
if os.path.exists(record_dir): # make sure holdout dir exists
tf_records.extend(
tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX)))
if not tf_records:
print('No holdout dataset for validation! '
'Please check your holdout directory: {}'.format(holdout_dir))
return
print('The length of tf_records is {}.'.format(len(tf_records)))
first_tf_record = os.path.basename(tf_records[0])
last_tf_record = os.path.basename(tf_records[-1])
with utils.logged_timer('Validating from {} to {}'.format(
first_tf_record, last_tf_record)):
dualnet.validate(estimator_model_dir, tf_records, params)