本文整理汇总了Python中utils.extract_bboxes方法的典型用法代码示例。如果您正苦于以下问题:Python utils.extract_bboxes方法的具体用法?Python utils.extract_bboxes怎么用?Python utils.extract_bboxes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.extract_bboxes方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_image_gt
# 需要导入模块: import utils [as 别名]
# 或者: from utils import extract_bboxes [as 别名]
def load_image_gt(mask, config, anchors):
"""Generate the ground truth data for a mask.
mask: [D, H, W]
Returns:
image: [1, D, H, W]
class_ids: [instance_count] Integer class IDs
bbox: [instance_count, (z1, y1, x1, z2, y2, x2)]
mask: [num_classes, D, H, W]
rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
rpn_bbox: [batch, N, (dz, dy, dx, log(dd), log(dh), log(dw))] Anchor bbox deltas
"""
# Bounding boxes: [num_instances, (z1, y1, x1, z2, y2, x2)]
bbox = utils.extract_bboxes(mask) # we here use the whole liver + tumor as the gt-bbox
bbox = utils.extend_bbox(bbox, mask.shape) # extend the gt_bbox with 5% ratio in each dimension
bbox = np.tile(bbox, (config.NUM_CLASSES - 1, 1)) # [num_classes - 1, (z1, y1, x1, z2, y2, x2)]
# RPN Targets
rpn_match, rpn_bbox = build_rpn_targets(anchors, np.array([bbox[0]]), config)
# Add to batch
rpn_match = rpn_match[:, np.newaxis]
return rpn_match, rpn_bbox, bbox
示例2: visualize_instance_segmentation
# 需要导入模块: import utils [as 别名]
# 或者: from utils import extract_bboxes [as 别名]
def visualize_instance_segmentation(data_base_dir, dataset_type, image_id, save_path='', verbose=True):
split_dataset = SketchDataset(data_base_dir)
split_dataset.load_sketches(dataset_type)
split_dataset.prepare()
original_image = split_dataset.load_image(image_id - 1)
gt_mask, gt_class_id = split_dataset.load_mask(image_id - 1)
gt_bbox = utils.extract_bboxes(gt_mask)
if verbose:
log('original_image', original_image)
log('gt_class_id', gt_class_id)
log('gt_bbox', gt_bbox)
log('gt_mask', gt_mask)
visualize.display_instances(original_image, gt_bbox, gt_mask, gt_class_id,
split_dataset.class_names, save_path=save_path)
示例3: load_image_gt
# 需要导入模块: import utils [as 别名]
# 或者: from utils import extract_bboxes [as 别名]
def load_image_gt(dataset, config, image_id, augment=False,
use_mini_mask=False):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
augment: If true, apply random image augmentation. Currently, only
horizontal flipping is offered.
use_mini_mask: If False, returns full-size masks that are the same height
and width as the original image. These can be big, for example
1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
224x224 and are generated by extracting the bounding box of the
object and resizing it to MINI_MASK_SHAPE.
Returns:
image: [height, width, 3]
shape: the original shape of the image before resizing and cropping.
class_ids: [instance_count] Integer class IDs
bbox: [instance_count, (y1, x1, y2, x2)]
mask: [height, width, instance_count]. The height and width are those
of the image unless use_mini_mask is True, in which case they are
defined in MINI_MASK_SHAPE.
"""
# Load image and mask
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
shape = image.shape
image, window, scale, padding = utils.resize_image(
image,
min_dim=config.IMAGE_MIN_DIM,
max_dim=config.IMAGE_MAX_DIM,
padding=config.IMAGE_PADDING)
mask = utils.resize_mask(mask, scale, padding)
# Random horizontal flips.
if augment:
if random.randint(0, 1):
image = np.fliplr(image)
mask = np.fliplr(mask)
# Bounding boxes. Note that some boxes might be all zeros
# if the corresponding mask got cropped out.
# bbox: [num_instances, (y1, x1, y2, x2)]
bbox = utils.extract_bboxes(mask)
# Active classes
# Different datasets have different classes, so track the
# classes supported in the dataset of this image.
active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
active_class_ids[source_class_ids] = 1
# Resize masks to smaller size to reduce memory usage
if use_mini_mask:
mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)
# Image meta data
image_meta = compose_image_meta(image_id, shape, window, active_class_ids)
return image, image_meta, class_ids, bbox, mask
示例4: load_image_gt
# 需要导入模块: import utils [as 别名]
# 或者: from utils import extract_bboxes [as 别名]
def load_image_gt(dataset, config, image_id, augment=False,
use_mini_mask=False):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
augment: If true, apply random image augmentation. Currently, only
horizontal flipping is offered.
use_mini_mask: If False, returns full-size masks that are the same height
and width as the original image. These can be big, for example
1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
224x224 and are generated by extracting the bounding box of the
object and resizing it to MINI_MASK_SHAPE.
Returns:
image: [height, width, 3]
shape: the original shape of the image before resizing and cropping.
class_ids: [instance_count] Integer class IDs
bbox: [instance_count, (y1, x1, y2, x2)]
mask: [height, width, instance_count]. The height and width are those
of the image unless use_mini_mask is True, in which case they are
defined in MINI_MASK_SHAPE.
"""
# Load image and mask
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
shape = image.shape
image_resize, window, scale, padding = utils.resize_image(
image,
min_dim=config.IMAGE_MIN_DIM,
max_dim=config.IMAGE_MAX_DIM,
padding=config.IMAGE_PADDING)
# mask = utils.resize_mask(mask, scale, padding)
mask = mask
# Random horizontal flips.
if augment:
if random.randint(0, 1):
image = np.fliplr(image)
mask = np.fliplr(mask)
# Bounding boxes. Note that some boxes might be all zeros
# if the corresponding mask got cropped out.
# bbox: [num_instances, (y1, x1, y2, x2)]
bbox = utils.extract_bboxes(mask)
# Active classes
# Different datasets have different classes, so track the
# classes supported in the dataset of this image.
active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
active_class_ids[source_class_ids] = 1
# Resize masks to smaller size to reduce memory usage
if use_mini_mask:
mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)
# Image meta data
image_meta = compose_image_meta(image_id, shape, window, active_class_ids)
return image, image_meta, class_ids, bbox, mask
开发者ID:wwoody827,项目名称:cvpr-2018-autonomous-driving-autopilot-solution,代码行数:61,代码来源:model_resnext_v2.py
示例5: load_image_gt
# 需要导入模块: import utils [as 别名]
# 或者: from utils import extract_bboxes [as 别名]
def load_image_gt(dataset, config, image_id, augment=True,
use_mini_mask=False):
"""Load and return ground truth data for an image (image, mask, bounding boxes).
augment: If true, apply random image augmentation. Currently, only
horizontal flipping is offered.
use_mini_mask: If False, returns full-size masks that are the same height
and width as the original image. These can be big, for example
1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
224x224 and are generated by extracting the bounding box of the
object and resizing it to MINI_MASK_SHAPE.
Returns:
image: [height, width, 3]
shape: the original shape of the image before resizing and cropping.
class_ids: [instance_count] Integer class IDs
bbox: [instance_count, (y1, x1, y2, x2)]
mask: [height, width, instance_count]. The height and width are those
of the image unless use_mini_mask is True, in which case they are
defined in MINI_MASK_SHAPE.
"""
# Load image and mask
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
shape = image.shape
image_resize, window, scale, padding = utils.resize_image(
image,
min_dim=config.IMAGE_MIN_DIM,
max_dim=config.IMAGE_MAX_DIM,
padding=config.IMAGE_PADDING)
# mask = utils.resize_mask(mask, scale, padding)
mask = mask
# Random horizontal flips.
if augment:
if random.randint(0, 1):
image = np.fliplr(image)
mask = np.fliplr(mask)
# Bounding boxes. Note that some boxes might be all zeros
# if the corresponding mask got cropped out.
# bbox: [num_instances, (y1, x1, y2, x2)]
bbox = utils.extract_bboxes(mask)
# Active classes
# Different datasets have different classes, so track the
# classes supported in the dataset of this image.
active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
active_class_ids[source_class_ids] = 1
# Resize masks to smaller size to reduce memory usage
if use_mini_mask:
mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)
# Image meta data
image_meta = compose_image_meta(image_id, shape, window, active_class_ids)
return image, image_meta, class_ids, bbox, mask