当前位置: 首页>>代码示例>>Python>>正文


Python boxes.xyxy_to_xywh方法代码示例

本文整理汇总了Python中utils.boxes.xyxy_to_xywh方法的典型用法代码示例。如果您正苦于以下问题:Python boxes.xyxy_to_xywh方法的具体用法?Python boxes.xyxy_to_xywh怎么用?Python boxes.xyxy_to_xywh使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils.boxes的用法示例。


在下文中一共展示了boxes.xyxy_to_xywh方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _coco_bbox_results_one_category

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def _coco_bbox_results_one_category(json_dataset, boxes, cat_id):
    results = []
    image_ids = json_dataset.COCO.getImgIds()
    image_ids.sort()
    assert len(boxes) == len(image_ids)
    for i, image_id in enumerate(image_ids):
        dets = boxes[i]
        if isinstance(dets, list) and len(dets) == 0:
            continue
        dets = dets.astype(np.float)
        scores = dets[:, -1]
        xywh_dets = box_utils.xyxy_to_xywh(dets[:, 0:4])
        xs = xywh_dets[:, 0]
        ys = xywh_dets[:, 1]
        ws = xywh_dets[:, 2]
        hs = xywh_dets[:, 3]
        results.extend(
            [{'image_id': image_id,
              'category_id': cat_id,
              'bbox': [xs[k], ys[k], ws[k], hs[k]],
              'score': scores[k]} for k in range(dets.shape[0])])
    return results 
开发者ID:roytseng-tw,项目名称:Detectron.pytorch,代码行数:24,代码来源:json_dataset_evaluator.py

示例2: _filter_crowd_proposals

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def _filter_crowd_proposals(roidb, crowd_thresh):
    """Finds proposals that are inside crowd regions and marks them as
    overlap = -1 with each ground-truth rois, which means they will be excluded
    from training.
    """
    for entry in roidb:
        gt_overlaps = entry['gt_overlaps'].toarray()
        crowd_inds = np.where(entry['is_crowd'] == 1)[0]
        non_gt_inds = np.where(entry['gt_classes'] == 0)[0]
        if len(crowd_inds) == 0 or len(non_gt_inds) == 0:
            continue
        crowd_boxes = box_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :])
        non_gt_boxes = box_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :])
        iscrowd_flags = [int(True)] * len(crowd_inds)
        ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags)
        bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0]
        gt_overlaps[non_gt_inds[bad_inds], :] = -1
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps) 
开发者ID:roytseng-tw,项目名称:Detectron.pytorch,代码行数:20,代码来源:json_dataset.py

示例3: _coco_bbox_results_one_category

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def _coco_bbox_results_one_category(json_dataset, boxes, cat_id):
    results = []
    # image_ids = json_dataset.COCO.getImgIds()
    # image_ids.sort()
    image_ids = json_dataset.test_img_ids
    assert len(boxes) == len(image_ids)
    for i, image_id in enumerate(image_ids):
        dets = boxes[i]
        if (isinstance(dets, list) and len(dets) == 0) or dets is None:
            continue
        dets = dets.astype(np.float)
        scores = dets[:, -1]
        xywh_dets = box_utils.xyxy_to_xywh(dets[:, 0:4])
        xs = xywh_dets[:, 0]
        ys = xywh_dets[:, 1]
        ws = xywh_dets[:, 2]
        hs = xywh_dets[:, 3]
        results.extend(
            [{'image_id': image_id,
              'category_id': cat_id,
              'bbox': [xs[k], ys[k], ws[k], hs[k]],
              'score': scores[k]} for k in range(dets.shape[0])])
    return results 
开发者ID:ruotianluo,项目名称:Context-aware-ZSR,代码行数:25,代码来源:json_dataset_evaluator.py

示例4: convert_raw_predictions_to_objs

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def convert_raw_predictions_to_objs(self, annots, image_id):
        if len(annots['boxes']) == 0:
            return []
        objs = []
        N = annots['boxes'].shape[0]
        for i in range(N):
            obj = {}
            # COCO labels are in xywh format, but I make predictions in xyxy
            # Remove the score from box before converting
            obj['bbox'] = box_utils.xyxy_to_xywh(annots['boxes'][i][
                np.newaxis, :4]).reshape((-1,)).tolist()
            obj['num_keypoints'] = annots['poses'][i].shape[-1]
            assert(obj['num_keypoints'] == cfg.KRCNN.NUM_KEYPOINTS)
            obj['segmentation'] = []
            obj['area'] = obj['bbox'][-1] * obj['bbox'][-2]
            obj['iscrowd'] = False
            pose = annots['poses'][i][:3].transpose()
            pose[pose[:, -1] >= 2.0, -1] = 2
            pose[pose[:, -1] < 2.0, -1] = 0
            obj['keypoints'] = pose.reshape((-1)).tolist()
            obj['track_id'] = annots['tracks'][i]
            obj['image_id'] = image_id
            obj['category_id'] = 1  # person
            objs.append(obj)
        return objs 
开发者ID:facebookresearch,项目名称:DetectAndTrack,代码行数:27,代码来源:json_dataset.py

示例5: test_bbox_dataset_to_prediction_roundtrip

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def test_bbox_dataset_to_prediction_roundtrip(self):
        """Simulate the process of reading a ground-truth box from a dataset,
        make predictions from proposals, convert the predictions back to the
        dataset format, and then use the COCO API to compute IoU overlap between
        the gt box and the predictions. These should have IoU of 1.
        """
        weights = (5, 5, 10, 10)
        # 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
        gt_xywh_box = [10, 20, 100, 150]
        # 2/ convert it to our internal (x1, y1, x2, y2) format
        gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
        # 3/ consider nearby proposal boxes
        prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
        # 4/ compute proposal-to-gt transformation deltas
        deltas = box_utils.bbox_transform_inv(
            prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
        )
        # 5/ use deltas to transform proposals to xyxy predicted box
        pred_xyxy_boxes = box_utils.bbox_transform(
            prop_xyxy_boxes, deltas, weights=weights
        )
        # 6/ convert xyxy predicted box to xywh predicted box
        pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
        # 7/ use COCO API to compute IoU
        not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
        ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
        np.testing.assert_array_almost_equal(ious, np.ones(ious.shape)) 
开发者ID:ronghanghu,项目名称:seg_every_thing,代码行数:29,代码来源:test_bbox_transform.py

示例6: test_cython_bbox_iou_against_coco_api_bbox_iou

# 需要导入模块: from utils import boxes [as 别名]
# 或者: from utils.boxes import xyxy_to_xywh [as 别名]
def test_cython_bbox_iou_against_coco_api_bbox_iou(self):
        """Check that our cython implementation of bounding box IoU overlap
        matches the COCO API implementation.
        """
        def _do_test(b1, b2):
            # Compute IoU overlap with the cython implementation
            cython_iou = box_utils.bbox_overlaps(b1, b2)
            # Compute IoU overlap with the COCO API implementation
            # (requires converting boxes from xyxy to xywh format)
            xywh_b1 = box_utils.xyxy_to_xywh(b1)
            xywh_b2 = box_utils.xyxy_to_xywh(b2)
            not_crowd = [int(False)] * b2.shape[0]
            coco_ious = COCOmask.iou(xywh_b1, xywh_b2, not_crowd)
            # IoUs should be similar
            np.testing.assert_array_almost_equal(
                cython_iou, coco_ious, decimal=5
            )

        # Test small boxes
        b1 = random_boxes([10, 10, 20, 20], 5, 10)
        b2 = random_boxes([10, 10, 20, 20], 5, 10)
        _do_test(b1, b2)

        # Test bigger boxes
        b1 = random_boxes([10, 10, 110, 20], 20, 10)
        b2 = random_boxes([10, 10, 110, 20], 20, 10)
        _do_test(b1, b2) 
开发者ID:ronghanghu,项目名称:seg_every_thing,代码行数:29,代码来源:test_bbox_transform.py


注:本文中的utils.boxes.xyxy_to_xywh方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。