本文整理汇总了Python中utils.blob.serialize方法的典型用法代码示例。如果您正苦于以下问题:Python blob.serialize方法的具体用法?Python blob.serialize怎么用?Python blob.serialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils.blob
的用法示例。
在下文中一共展示了blob.serialize方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __getitem__
# 需要导入模块: from utils import blob [as 别名]
# 或者: from utils.blob import serialize [as 别名]
def __getitem__(self, index_tuple):
index, ratio = index_tuple
single_db = [self._roidb[index]]
blobs, valid = get_minibatch(single_db)
#TODO: Check if minibatch is valid ? If not, abandon it.
# Need to change _worker_loop in torch.utils.data.dataloader.py.
# Squeeze batch dim
for key in blobs:
if key != 'roidb':
blobs[key] = blobs[key].squeeze(axis=0)
if self._roidb[index]['need_crop']:
self.crop_data(blobs, ratio)
# Check bounding box
entry = blobs['roidb'][0]
boxes = entry['boxes']
invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3])
valid_inds = np.nonzero(~ invalid)[0]
if len(valid_inds) < len(boxes):
for key in ['boxes', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd',
'box_to_gt_ind_map', 'gt_keypoints']:
if key in entry:
entry[key] = entry[key][valid_inds]
entry['segms'] = [entry['segms'][ind] for ind in valid_inds]
blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn
return blobs
示例2: __getitem__
# 需要导入模块: from utils import blob [as 别名]
# 或者: from utils.blob import serialize [as 别名]
def __getitem__(self, index_tuple):
index, ratio = index_tuple
single_db = [self._roidb[index]]
## _add_proposals(xxx)
blobs, valid = get_minibatch(single_db)
#TODO: Check if minibatch is valid ? If not, abandon it.
# Need to change _worker_loop in torch.utils.data.dataloader.py.
# Squeeze batch dim
for key in blobs:
if key != 'roidb':
blobs[key] = blobs[key].squeeze(axis=0)
if self._roidb[index]['need_crop']:
self.crop_data(blobs, ratio)
# Check bounding box
entry = blobs['roidb'][0]
boxes = entry['boxes']
invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3])
valid_inds = np.nonzero(~ invalid)[0]
if len(valid_inds) < len(boxes):
for key in ['boxes', 'precomp_keypoints', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd',
'box_to_gt_ind_map', 'gt_keypoints', 'gt_actions', 'gt_role_id']:
if key in entry:
entry[key] = entry[key][valid_inds]
entry['segms'] = [entry['segms'][ind] for ind in valid_inds]
blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn
return blobs
示例3: __getitem__
# 需要导入模块: from utils import blob [as 别名]
# 或者: from utils.blob import serialize [as 别名]
def __getitem__(self, index_tuple):
index, ratio = index_tuple
single_db = [self._roidb[index]]
blobs, valid = get_minibatch(single_db)
#TODO: Check if minibatch is valid ? If not, abandon it.
# Need to change _worker_loop in torch.utils.data.dataloader.py.
# Squeeze batch dim
for key in blobs:
if key != 'roidb':
# print('%s %s' % (key, type(blobs[key])))
# print(blobs[key].shape)
blobs[key] = blobs[key].squeeze(axis=0)
if self._roidb[index]['need_crop']:
self.crop_data(blobs, ratio)
# Check bounding box
entry = blobs['roidb'][0]
boxes = entry['boxes']
invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3])
valid_inds = np.nonzero(~ invalid)[0]
if len(valid_inds) < len(boxes):
for key in ['boxes', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd',
'box_to_gt_ind_map', 'gt_keypoints', 'gt_scores', 'dataset_id',
'gt_source']: # EDIT: gt_scores
if key in entry:
entry[key] = entry[key][valid_inds]
entry['segms'] = [entry['segms'][ind] for ind in valid_inds]
blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn
return blobs
示例4: __getitem__
# 需要导入模块: from utils import blob [as 别名]
# 或者: from utils.blob import serialize [as 别名]
def __getitem__(self, index_tuple):
index, ratio = index_tuple
single_db = [self._roidb[index]]
blobs, valid = get_minibatch(single_db)
#TODO: Check if minibatch is valid ? If not, abandon it.
# Need to change _worker_loop in torch.utils.data.dataloader.py.
# Squeeze batch dim
for key in blobs:
if key != 'roidb':
blobs[key] = blobs[key].squeeze(axis=0)
if self._roidb[index]['need_crop']:
self.crop_data(blobs, ratio)
# Check bounding box
entry = blobs['roidb'][0]
boxes = entry['boxes']
invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3])
valid_inds = np.nonzero(~ invalid)[0]
if len(valid_inds) < len(boxes):
for key in ['boxes', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd',
'box_to_gt_ind_map', 'gt_keypoints']:
if key in entry:
entry[key] = entry[key][valid_inds]
entry['segms'] = [entry['segms'][ind] for ind in valid_inds]
# for rel sanity check
sbj_gt_boxes = entry['sbj_gt_boxes']
obj_gt_boxes = entry['obj_gt_boxes']
sbj_invalid = (sbj_gt_boxes[:, 0] == sbj_gt_boxes[:, 2]) | (sbj_gt_boxes[:, 1] == sbj_gt_boxes[:, 3])
obj_invalid = (obj_gt_boxes[:, 0] == obj_gt_boxes[:, 2]) | (obj_gt_boxes[:, 1] == obj_gt_boxes[:, 3])
rel_valid = sbj_invalid | obj_invalid
rel_valid_inds = np.nonzero(~ rel_invalid)[0]
if len(rel_valid_inds) < len(sbj_gt_boxes):
for key in ['sbj_gt_boxes', 'sbj_gt_classes', 'obj_gt_boxes', 'obj_gt_classes', 'prd_gt_classes',
'sbj_gt_overlaps', 'obj_gt_overlaps', 'prd_gt_overlaps', 'pair_to_gt_ind_map',
'width', 'height']:
if key in entry:
entry[key] = entry[key][rel_valid_inds]
blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn
return blobs
示例5: add_rpn_blobs
# 需要导入模块: from utils import blob [as 别名]
# 或者: from utils.blob import serialize [as 别名]
def add_rpn_blobs(blobs, im_scales, roidb):
"""Add blobs needed training RPN-only and end-to-end Faster R-CNN models."""
# Temporal dimensions of the output
T = roidb[0]['boxes'].shape[-1] // 4
# Following vars are only used in FPN case, but keeping it out of the "if"
# condition, so as to allow for _populate_rpn_blobs to work (it will pass
# these dummy values and not use them)
foas = []
k_max = cfg.FPN.RPN_MAX_LEVEL
k_min = cfg.FPN.RPN_MIN_LEVEL
if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_RPN:
# RPN applied to many feature levels, as in the FPN paper
for lvl in range(k_min, k_max + 1):
field_stride = 2. ** lvl
anchor_sizes = (
cfg.FPN.RPN_ANCHOR_START_SIZE * 2. ** (lvl - k_min), )
anchor_aspect_ratios = cfg.FPN.RPN_ASPECT_RATIOS
foa = _get_field_of_anchors(
field_stride, anchor_sizes, anchor_aspect_ratios, T)
foas.append(foa)
all_anchors = np.concatenate([f.field_of_anchors for f in foas])
else:
foa = _get_field_of_anchors(
cfg.RPN.STRIDE, cfg.RPN.SIZES, cfg.RPN.ASPECT_RATIOS, T)
all_anchors = foa.field_of_anchors
for im_i, entry in enumerate(roidb):
_populate_rpn_blobs(entry, im_scales[im_i], blobs, all_anchors, foas,
foa, k_min, k_max)
for k, v in blobs.items():
if isinstance(v, list) and len(v) > 0:
blobs[k] = np.concatenate(v)
valid_keys = [
'has_visible_keypoints', 'boxes', 'segms', 'seg_areas', 'gt_classes',
'gt_overlaps', 'is_crowd', 'box_to_gt_ind_map', 'gt_keypoints']
minimal_roidb = [{} for _ in range(len(roidb))]
for i, e in enumerate(roidb):
for k in valid_keys:
if k in e:
minimal_roidb[i][k] = e[k]
blobs['roidb'] = blob_utils.serialize(minimal_roidb)
# Always return valid=True, since RPN minibatches are valid by design
return True