本文整理汇总了Python中utils.averager方法的典型用法代码示例。如果您正苦于以下问题:Python utils.averager方法的具体用法?Python utils.averager怎么用?Python utils.averager使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.averager方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: checkAverager
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def checkAverager(self):
acc = utils.averager()
acc.add(Variable(torch.Tensor([1, 2])))
acc.add(Variable(torch.Tensor([[5, 6]])))
assert acc.val() == 3.5
acc = utils.averager()
acc.add(torch.Tensor([1, 2]))
acc.add(torch.Tensor([[5, 6]]))
assert acc.val() == 3.5
示例2: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image) # size = 26, 64, 96
# print(preds.size())
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2) # size = 26, 64
# print(preds.size())
# preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-30s => %-30s, gt: %-30s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例3: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, criterion):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
val_iter = iter(val_loader)
i = 0
n_correct = 0
loss_avg = utils.averager() # The blobal loss_avg is used by train
max_iter = len(val_loader)
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.LongTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
cpu_texts_decode = []
for i in cpu_texts:
cpu_texts_decode.append(i.decode('utf-8', 'strict'))
for pred, target in zip(sim_preds, cpu_texts_decode):
if pred == target:
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_val_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts_decode):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * params.batchSize)
print('Val loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例4: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, criterion, max_iter=100):
#print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length)
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
#cpu_texts_decode = []
#for i in cpu_texts:
# cpu_texts_decode.append(i.decode('utf-8', 'strict'))
for pred, target in zip(sim_preds, cpu_texts):
if pred == target:
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * params.batchSize)
print('loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
return loss_avg.val(), accuracy
示例5: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例6: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, test_dataset, criterion, max_iter=2):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=opt.batchSize, num_workers=int(opt.workers),
sampler=dataset.randomSequentialSampler(test_dataset, opt.batchSize),
collate_fn=dataset.alignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio=opt.keep_ratio))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
test_distance=0
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
if ifUnicode:
cpu_texts = [ clean_txt(tx.decode('utf-8')) for tx in cpu_texts]
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
# preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred.strip() == target.strip():
n_correct += 1
# print(distance.levenshtein(pred.strip(), target.strip()))
test_distance +=distance.nlevenshtein(pred.strip(), target.strip(),method=2)
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
test_distance=test_distance/float(max_iter * opt.batchSize)
testLoss = loss_avg.val()
#print('Test loss: %f, accuray: %f' % (testLoss, accuracy))
return testLoss,accuracy,test_distance
示例7: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
preds = preds.squeeze(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target:
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred.encode('utf-8'), pred.encode('utf-8'), gt.encode('utf-8')))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例8: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, criterion, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=params.batchSize, num_workers=int(params.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
loss_avg = utils.averager()
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
# print('-----preds-----')
# print(preds)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
# print('-----preds_size-----')
# print(preds_size)
cost = criterion(preds, text, preds_size, length) / batch_size
loss_avg.add(cost)
_, preds = preds.max(2)
# print('-----preds.max(2)-----')
# print(preds)
preds = preds.transpose(1, 0).contiguous().view(-1)
# print('-----preds.transpose(1, 0)-----')
# print(preds)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
list_1 = []
for m in cpu_texts:
list_1.append(m.decode('utf-8', 'strict'))
# if (i - 1) % 10 == 0:
# print('-----sim_preds-----list_1-----')
# print(sim_preds, list_1)
for pred, target in zip(sim_preds, list_1):
if pred == target:
n_correct += 1
# else:
# print('%-20s, gt: %-20s' % (pred, target))
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:params.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, list_1):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
print(n_correct)
print(max_iter * params.batchSize)
accuracy = n_correct / float(max_iter * params.batchSize)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
示例9: val
# 需要导入模块: import utils [as 别名]
# 或者: from utils import averager [as 别名]
def val(net, dataset, max_iter=100):
print('Start val')
for p in crnn.parameters():
p.requires_grad = False
net.eval()
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers))
val_iter = iter(data_loader)
i = 0
n_correct = 0
# loss averager
avg_h_val = utils.averager()
avg_cost_val = utils.averager()
avg_h_cost_val = utils.averager()
if opt.eval_all:
max_iter = len(data_loader)
else:
max_iter = min(max_iter, len(data_loader))
for i in range(max_iter):
data = val_iter.next()
i += 1
cpu_images, cpu_texts = data
batch_size = cpu_images.size(0)
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts)
utils.loadData(text, t)
utils.loadData(length, l)
preds = crnn(image)
preds_size = Variable(torch.IntTensor([preds.size(0)] * batch_size))
H, cost = seg_ctc_ent_cost(preds, text, preds_size, length, uni_rate=opt.uni_rate)
h_cost = (1-opt.h_rate)*cost-opt.h_rate*H
avg_h_val.add(H / batch_size)
avg_cost_val.add(cost / batch_size)
avg_h_cost_val.add(h_cost / batch_size)
_, preds = preds.max(2)
preds = preds.transpose(1, 0).contiguous().view(-1)
sim_preds = converter.decode(preds.data, preds_size.data, raw=False)
for idx, (pred, target) in enumerate(zip(sim_preds, cpu_texts)):
if pred == target.lower():
n_correct += 1
raw_preds = converter.decode(preds.data, preds_size.data, raw=True)[:opt.n_test_disp]
for raw_pred, pred, gt in zip(raw_preds, sim_preds, cpu_texts):
print('%-20s => %-20s, gt: %-20s' % (raw_pred, pred, gt))
accuracy = n_correct / float(max_iter * opt.batchSize)
print('Test H: %f, Cost: %f, H Cost: %f, accuray: %f' %
(avg_h_val.val(), avg_cost_val.val(), avg_h_cost_val.val(), accuracy))