本文整理汇总了Python中utils.GetListOfFeatureNamesAndSizes方法的典型用法代码示例。如果您正苦于以下问题:Python utils.GetListOfFeatureNamesAndSizes方法的具体用法?Python utils.GetListOfFeatureNamesAndSizes怎么用?Python utils.GetListOfFeatureNamesAndSizes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类utils
的用法示例。
在下文中一共展示了utils.GetListOfFeatureNamesAndSizes方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例2: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_dir is "":
raise ValueError("'output_dir' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.model_checkpoint_path, FLAGS.input_data_pattern,
FLAGS.output_dir, FLAGS.batch_size, FLAGS.top_k)
示例3: get_reader
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例4: get_reader
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
num_classes = FLAGS.truncated_num_classes,
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
num_classes = FLAGS.truncated_num_classes,
decode_zlib = FLAGS.decode_zlib,
feature_names=feature_names, feature_sizes=feature_sizes, feature_calcs=FLAGS.c_vars, feature_remove=FLAGS.r_vars)
return reader
示例5: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.checkpoint_file, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例6: get_reader
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
示例7: check_video_id
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def check_video_id():
tf.set_random_seed(0) # for reproducibility
with tf.Graph().as_default():
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
# prepare a reader for each single model prediction result
all_readers = []
all_patterns = FLAGS.eval_data_patterns
all_patterns = map(lambda x: x.strip(), all_patterns.strip().strip(",").split(","))
for i in xrange(len(all_patterns)):
reader = readers.EnsembleReader(
feature_names=feature_names, feature_sizes=feature_sizes)
all_readers.append(reader)
input_reader = None
input_data_pattern = None
if FLAGS.input_data_pattern is not None:
input_reader = readers.EnsembleReader(
feature_names=["mean_rgb","mean_audio"], feature_sizes=[1024,128])
input_data_pattern = FLAGS.input_data_pattern
if FLAGS.eval_data_patterns is "":
raise IOError("'eval_data_patterns' was not specified. " +
"Nothing to evaluate.")
build_graph(
all_readers=all_readers,
input_reader=input_reader,
input_data_pattern=input_data_pattern,
all_eval_data_patterns=all_patterns,
batch_size=FLAGS.batch_size)
logging.info("built evaluation graph")
video_id_equal = tf.get_collection("video_id_equal")[0]
input_distance = tf.get_collection("input_distance")[0]
check_loop(video_id_equal, input_distance, all_patterns)
示例8: build_model
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def build_model(self):
"""Find the model and build the graph."""
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
if FLAGS.frame_only:
reader = readers.YT8MFrameFeatureOnlyReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
# Find the model.
model = find_class_by_name(FLAGS.model,
[labels_embedding])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses_embedding])()
optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])
build_graph(reader=reader,
model=model,
optimizer_class=optimizer_class,
clip_gradient_norm=FLAGS.clip_gradient_norm,
train_data_pattern=FLAGS.train_data_pattern,
label_loss_fn=label_loss_fn,
base_learning_rate=FLAGS.base_learning_rate,
learning_rate_decay=FLAGS.learning_rate_decay,
learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
regularization_penalty=FLAGS.regularization_penalty,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
logging.info("%s: Built graph.", task_as_string(self.task))
return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25)
示例9: build_model
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def build_model(self):
"""Find the model and build the graph."""
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
if FLAGS.frame_only:
reader = readers.YT8MFrameFeatureOnlyReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
# Find the model.
model = find_class_by_name(FLAGS.model,
[labels_autoencoder])()
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])
build_graph(reader=reader,
model=model,
optimizer_class=optimizer_class,
clip_gradient_norm=FLAGS.clip_gradient_norm,
train_data_pattern=FLAGS.train_data_pattern,
label_loss_fn=label_loss_fn,
base_learning_rate=FLAGS.base_learning_rate,
learning_rate_decay=FLAGS.learning_rate_decay,
learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
regularization_penalty=FLAGS.regularization_penalty,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
logging.info("%s: Built graph.", task_as_string(self.task))
return tf.train.Saver(max_to_keep=2, keep_checkpoint_every_n_hours=0.25)
示例10: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
transformer_fn = find_class_by_name(FLAGS.feature_transformer,
[feature_transform])
build_graph(reader,
model,
input_data_pattern=FLAGS.input_data_pattern,
batch_size=FLAGS.batch_size,
transformer_class=transformer_fn)
saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=10000000000)
inference(saver, FLAGS.train_dir,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例11: lstm
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def lstm(self, model_input, vocab_size, num_frames, sub_scope="", **unused_params):
number_of_layers = FLAGS.lstm_layers
lstm_sizes = map(int, FLAGS.lstm_cells.split(","))
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
sub_inputs = [tf.nn.l2_normalize(x, dim=2) for x in tf.split(model_input, feature_sizes, axis = 2)]
assert len(lstm_sizes) == len(feature_sizes), \
"length of lstm_sizes (={}) != length of feature_sizes (={})".format( \
len(lstm_sizes), len(feature_sizes))
states = []
for i in xrange(len(feature_sizes)):
with tf.variable_scope(sub_scope+"RNN%d" % i):
sub_input = sub_inputs[i]
lstm_size = lstm_sizes[i]
## Batch normalize the input
stacked_lstm = tf.contrib.rnn.MultiRNNCell(
[
tf.contrib.rnn.BasicLSTMCell(
lstm_size, forget_bias=1.0, state_is_tuple=True)
for _ in range(number_of_layers)
],
state_is_tuple=True)
output, state = tf.nn.dynamic_rnn(stacked_lstm, sub_input,
sequence_length=num_frames,
swap_memory=FLAGS.rnn_swap_memory,
dtype=tf.float32)
states.extend(map(lambda x: x.c, state))
final_state = tf.concat(states, axis = 1)
return final_state
示例12: lstmoutput
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def lstmoutput(self, model_input, vocab_size, num_frames):
number_of_layers = FLAGS.lstm_layers
lstm_sizes = map(int, FLAGS.lstm_cells.split(","))
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
sub_inputs = [tf.nn.l2_normalize(x, dim=2) for x in tf.split(model_input, feature_sizes, axis = 2)]
assert len(lstm_sizes) == len(feature_sizes), \
"length of lstm_sizes (={}) != length of feature_sizes (={})".format( \
len(lstm_sizes), len(feature_sizes))
outputs = []
for i in xrange(len(feature_sizes)):
with tf.variable_scope("RNN%d" % i):
sub_input = sub_inputs[i]
lstm_size = lstm_sizes[i]
## Batch normalize the input
stacked_lstm = tf.contrib.rnn.MultiRNNCell(
[
tf.contrib.rnn.BasicLSTMCell(
lstm_size, forget_bias=1.0, state_is_tuple=True)
for _ in range(number_of_layers)
],
state_is_tuple=True)
output, state = tf.nn.dynamic_rnn(stacked_lstm, sub_input,
sequence_length=num_frames,
swap_memory=FLAGS.rnn_swap_memory,
dtype=tf.float32)
outputs.append(output)
# concat
final_output = tf.concat(outputs, axis=2)
return final_output
示例13: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not os.path.exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not file_io.file_exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(file_io.FileIO(flags_dict_file, "r").read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if not FLAGS.output_file:
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if not FLAGS.input_data_pattern:
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)
示例14: get_reader
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes,
segment_labels=FLAGS.segment_labels)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
return reader
示例15: main
# 需要导入模块: import utils [as 别名]
# 或者: from utils import GetListOfFeatureNamesAndSizes [as 别名]
def main(unused_argv):
logging.set_verbosity(tf.logging.INFO)
if FLAGS.input_model_tgz:
if FLAGS.train_dir:
raise ValueError("You cannot supply --train_dir if supplying "
"--input_model_tgz")
# Untar.
if not os.path.exists(FLAGS.untar_model_dir):
os.makedirs(FLAGS.untar_model_dir)
tarfile.open(FLAGS.input_model_tgz).extractall(FLAGS.untar_model_dir)
FLAGS.train_dir = FLAGS.untar_model_dir
flags_dict_file = os.path.join(FLAGS.train_dir, "model_flags.json")
if not os.path.exists(flags_dict_file):
raise IOError("Cannot find %s. Did you run eval.py?" % flags_dict_file)
flags_dict = json.loads(open(flags_dict_file).read())
# convert feature_names and feature_sizes to lists of values
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
flags_dict["feature_names"], flags_dict["feature_sizes"])
if flags_dict["frame_features"]:
reader = readers.YT8MFrameFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(feature_names=feature_names,
feature_sizes=feature_sizes)
if FLAGS.output_file is "":
raise ValueError("'output_file' was not specified. "
"Unable to continue with inference.")
if FLAGS.input_data_pattern is "":
raise ValueError("'input_data_pattern' was not specified. "
"Unable to continue with inference.")
inference(reader, FLAGS.train_dir, FLAGS.input_data_pattern,
FLAGS.output_file, FLAGS.batch_size, FLAGS.top_k)