当前位置: 首页>>代码示例>>Python>>正文


Python utils.Config方法代码示例

本文整理汇总了Python中utils.Config方法的典型用法代码示例。如果您正苦于以下问题:Python utils.Config方法的具体用法?Python utils.Config怎么用?Python utils.Config使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils.Config方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_data

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def load_data(train_file, test_file, eval_dev=-1):
    for filename in [train_file, test_file]:
        if filename is None:
            continue
        if not (os.path.exists(filename) and os.path.isfile(filename)):
            raise RuntimeError("File not found when loading data from %s" % filename)

    def _load(filename):
        if filename is None:
            return []
        ret = []
        with open(filename, "r") as fin:
            for line in fin:
                if line:
                    key, string = line.split(":", 1)
                    op, _, shape_str, target_str = key.split("_")
                    shape = [int(x) for x in shape_str[1:-1].split(", ")]
                    target, dev_id_str = target_str[:-1].split("(")
                    dev_id = int(dev_id_str) if eval_dev < 0 else eval_dev
                    config = json.loads(string)
                    ret.append(DataItem(
                        op=op, 
                        shape=shape, 
                        target=TargetItem(target=target, dev_id=dev_id), 
                        config=utils.Config(config[0], config[1]))
                    )
        return ret
    
    return _load(train_file), _load(test_file) 
开发者ID:KnowingNothing,项目名称:FlexTensor,代码行数:31,代码来源:train.py

示例2: get_estimator

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def get_estimator(**kwargs):
  """Construct an estimator."""
  cfg = utils.Config(kwargs)

  if cfg.tpu.get('name'):
    tf.logging.info('Using cluster resolver.')
    cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        cfg.tpu.name, zone=cfg.tpu.zone, project=cfg.tpu.gcp_project)
    master = None
  else:
    cluster_resolver = None
    master = cfg.master

  tf.logging.info('Config:\n %s' % cfg)
  if cfg.tpu.enable:
    if not cfg.steps_per_epoch:
      raise ValueError('steps_per_epoch must be nonzero on TPU.')
    exp = tf.contrib.tpu.TPUEstimator(
        model_fn=model_fn,
        config=tf.contrib.tpu.RunConfig(
            cluster=cluster_resolver,
            master=master,
            model_dir=cfg.model_dir,
            tpu_config=tf.contrib.tpu.TPUConfig(
                iterations_per_loop=cfg.steps_per_epoch)),
        use_tpu=True,
        eval_on_tpu=False,
        # TPU requires these args, but they are ignored inside the input
        # function, which directly get train_batch_size or eval_batch_size.
        train_batch_size=cfg.dataset.train_batch_size,
        eval_batch_size=cfg.dataset.eval_batch_size,
        params=cfg,
    )
  else:
    exp = tf.estimator.Estimator(
        model_fn=model_fn, model_dir=cfg.model_dir, params=cfg)

  return exp 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:40,代码来源:model.py

示例3: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config, model_config)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = SenCNN(num_classes=model_config.num_classes, vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    # evaluation
    summary_manager = SummaryManager(exp_dir)
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")
    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:33,代码来源:evaluate.py

示例4: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    ptr_config_info = Config(f"conf/pretrained/{model_config.type}.json")

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
        f"_weight_decay_{args.weight_decay}"
    )

    preprocessor = get_preprocessor(ptr_config_info, model_config)

    with open(ptr_config_info.config, mode="r") as io:
        ptr_config = json.load(io)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint('best.tar')
    config = BertConfig()
    config.update(ptr_config)
    model = PairwiseClassifier(config, num_classes=model_config.num_classes, vocab=preprocessor.vocab)
    model.load_state_dict(checkpoint['model_state_dict'])

    # evaluation
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, preprocessor.preprocess)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    summary_manager = SummaryManager(exp_dir)
    summary = evaluate(model, dl, {'loss': nn.CrossEntropyLoss(), 'acc': acc}, device)

    summary_manager.load('summary.json')
    summary_manager.update({'{}'.format(args.data): summary})
    summary_manager.save('summary.json')

    print('loss: {:.3f}, acc: {:.2%}'.format(summary['loss'], summary['acc'])) 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:41,代码来源:evaluate.py

示例5: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config)

    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = ConvRec(num_classes=model_config.num_classes, embedding_dim=model_config.embedding_dim,
                    hidden_dim=model_config.hidden_dim, vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    summary_manager = SummaryManager(exp_dir)
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform, min_length=model_config.min_length,
                pad_val=tokenizer.vocab.to_indices(' '))
    dl = DataLoader(ds, batch_size=args.batch_size, collate_fn=batchify)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")
    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:34,代码来源:evaluate.py

示例6: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config, model_config)

    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = VDCNN(num_classes=model_config.num_classes, embedding_dim=model_config.embedding_dim,
                  k_max=model_config.k_max, vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    summary_manager = SummaryManager(exp_dir)
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")
    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:32,代码来源:evaluate.py

示例7: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = SAN(num_classes=model_config.num_classes, lstm_hidden_dim=model_config.lstm_hidden_dim,
                da=model_config.da, r=model_config.r, hidden_dim=model_config.hidden_dim, vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    # evaluation
    summary_manager = SummaryManager(exp_dir)
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4, collate_fn=batchify)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")
    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:35,代码来源:evaluate.py

示例8: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    ptr_config_info = Config(f"conf/pretrained/{model_config.type}.json")

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
        f"_weight_decay_{args.weight_decay}"
    )

    preprocessor = get_preprocessor(ptr_config_info, model_config)

    with open(ptr_config_info.config, mode="r") as io:
        ptr_config = json.load(io)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint('best.tar')
    config = BertConfig()
    config.update(ptr_config)
    model = SentenceClassifier(config, num_classes=model_config.num_classes, vocab=preprocessor.vocab)
    model.load_state_dict(checkpoint['model_state_dict'])

    # evaluation
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, preprocessor.preprocess)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4)
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)

    summary_manager = SummaryManager(exp_dir)
    summary = evaluate(model, dl, {'loss': nn.CrossEntropyLoss(), 'acc': acc}, device)

    summary_manager.load('summary.json')
    summary_manager.update({'{}'.format(args.data): summary})
    summary_manager.save('summary.json')

    print('loss: {:.3f}, acc: {:.2%}'.format(summary['loss'], summary['acc'])) 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:41,代码来源:evaluate.py

示例9: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    preprocessor = get_preprocessor(dataset_config, coarse_split_fn=split_morphs, fine_split_fn=split_jamos)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = SAN(model_config.num_classes, preprocessor.coarse_vocab, preprocessor.fine_vocab,
                model_config.fine_embedding_dim, model_config.hidden_dim, model_config.multi_step,
                model_config.prediction_drop_ratio)
    model.load_state_dict(checkpoint["model_state_dict"])

    # evaluation
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, preprocessor.preprocess)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4, collate_fn=batchify)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary_manager = SummaryManager(exp_dir)
    summary = evaluate(model, dl, {"loss": log_loss, "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")

    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:37,代码来源:evaluate.py

示例10: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)
    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config, model_config)

    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = CharCNN(num_classes=model_config.num_classes, embedding_dim=model_config.embedding_dim,
                    vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    summary_manager = SummaryManager(exp_dir)
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")
    print(f"loss: {summary['loss']:.3f}, acc: {summary['acc']:.2%}") 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:32,代码来源:evaluate.py

示例11: main

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Config [as 别名]
def main(args):
    dataset_config = Config(args.dataset_config)
    model_config = Config(args.model_config)

    exp_dir = Path("experiments") / model_config.type
    exp_dir = exp_dir.joinpath(
        f"epochs_{args.epochs}_batch_size_{args.batch_size}_learning_rate_{args.learning_rate}"
    )

    tokenizer = get_tokenizer(dataset_config, split_fn=split_morphs)

    # model (restore)
    checkpoint_manager = CheckpointManager(exp_dir)
    checkpoint = checkpoint_manager.load_checkpoint("best.tar")
    model = MaLSTM(num_classes=model_config.num_classes, hidden_dim=model_config.hidden_dim, vocab=tokenizer.vocab)
    model.load_state_dict(checkpoint["model_state_dict"])

    # evaluation
    filepath = getattr(dataset_config, args.data)
    ds = Corpus(filepath, tokenizer.split_and_transform)
    dl = DataLoader(ds, batch_size=args.batch_size, num_workers=4, collate_fn=batchify)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model.to(device)

    summary_manager = SummaryManager(exp_dir)
    summary = evaluate(model, dl, {"loss": nn.CrossEntropyLoss(), "acc": acc}, device)

    summary_manager.load("summary.json")
    summary_manager.update({f"{args.data}": summary})
    summary_manager.save("summary.json")

    print("loss: {:.3f}, acc: {:.2%}".format(summary["loss"], summary["acc"])) 
开发者ID:aisolab,项目名称:nlp_classification,代码行数:35,代码来源:evaluate.py


注:本文中的utils.Config方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。