当前位置: 首页>>代码示例>>Python>>正文


Python utils.Bar方法代码示例

本文整理汇总了Python中utils.Bar方法的典型用法代码示例。如果您正苦于以下问题:Python utils.Bar方法的具体用法?Python utils.Bar怎么用?Python utils.Bar使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils.Bar方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(async=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:zhunzhong07,项目名称:Random-Erasing,代码行数:56,代码来源:fashionmnist.py

示例2: test

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def test(testloader, model, criterion, epoch, use_cuda):
    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Processing', max=len(testloader))
    for batch_idx, (inputs, targets) in enumerate(testloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(testloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:zhunzhong07,项目名称:Random-Erasing,代码行数:53,代码来源:fashionmnist.py

示例3: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:LiyuanLucasLiu,项目名称:RAdam,代码行数:56,代码来源:cifar.py

示例4: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(train_loader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(train_loader))
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(train_loader),
                    data=data_time.val,
                    bt=batch_time.val,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:LiyuanLucasLiu,项目名称:RAdam,代码行数:56,代码来源:imagenet.py

示例5: test

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def test(val_loader, model, criterion, epoch, use_cuda):
    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Processing', max=len(val_loader))
    for batch_idx, (inputs, targets) in enumerate(val_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(val_loader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:LiyuanLucasLiu,项目名称:RAdam,代码行数:53,代码来源:imagenet.py

示例6: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()
    bin_gates = [p for p in model.parameters() if getattr(p, 'bin_gate', False)] 

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            targets = targets.cuda(async=True)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        for p in bin_gates:
            p.data.clamp_(min=0, max=1)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg, top5.avg) 
开发者ID:hyeonseobnam,项目名称:Batch-Instance-Normalization,代码行数:58,代码来源:main.py

示例7: test

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def test(testloader, model, criterion, epoch, use_cuda):
    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Processing', max=len(testloader))
    for batch_idx, (inputs, targets) in enumerate(testloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            targets = targets.cuda(async=True)

        # compute output
        with torch.no_grad():
            outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(prec1.item(), inputs.size(0))
        top5.update(prec5.item(), inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(testloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg, top5.avg) 
开发者ID:hyeonseobnam,项目名称:Batch-Instance-Normalization,代码行数:53,代码来源:main.py

示例8: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(async=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        att_outputs, per_outputs, _ = model(inputs)
        att_loss = criterion(att_outputs, targets)
        per_loss = criterion(per_outputs, targets)
        loss = att_loss + per_loss

        # measure accuracy and record loss
        prec1, prec5 = accuracy(per_outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:machine-perception-robotics-group,项目名称:attention_branch_network,代码行数:58,代码来源:cifar.py

示例9: test

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def test(testloader, model, criterion, epoch, use_cuda):
    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Processing', max=len(testloader))
    for batch_idx, (inputs, targets) in enumerate(testloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)

        # compute output
        _, outputs, attention = model(inputs)
        loss = criterion(outputs, targets)


        print(attention.min(), attention.max())
        """
        np_inputs = inputs.numpy()
        np_att = attention.numpy()
        for item_in, item_att in zip(np_inputs, np_att):
            print(item_in.shape, item_att.shape)
        """

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(testloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:machine-perception-robotics-group,项目名称:attention_branch_network,代码行数:62,代码来源:cifar.py

示例10: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(train_loader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(train_loader))
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(async=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        att_outputs, outputs, _  = model(inputs)
        att_loss = criterion(att_outputs, targets)
        per_loss = criterion(outputs, targets)
        loss = att_loss + per_loss



        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(train_loader),
                    data=data_time.val,
                    bt=batch_time.val,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:machine-perception-robotics-group,项目名称:attention_branch_network,代码行数:60,代码来源:imagenet.py

示例11: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(train_loader, train_loader_len, model, criterion, optimizer, epoch):
    bar = Bar('Processing', max=train_loader_len)

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        adjust_learning_rate(optimizer, epoch, i, train_loader_len)

        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(non_blocking=True)

        # compute output
        output = model(input)
        loss = criterion(output, target)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), input.size(0))
        top1.update(prec1.item(), input.size(0))
        top5.update(prec5.item(), input.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=i + 1,
                    size=train_loader_len,
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:d-li14,项目名称:HBONet,代码行数:57,代码来源:imagenet.py

示例12: validate

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def validate(val_loader, val_loader_len, model, criterion):
    bar = Bar('Processing', max=val_loader_len)

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        target = target.cuda(non_blocking=True)

        with torch.no_grad():
            # compute output
            output = model(input)
            loss = criterion(output, target)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), input.size(0))
        top1.update(prec1.item(), input.size(0))
        top5.update(prec5.item(), input.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=i + 1,
                    size=val_loader_len,
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:d-li14,项目名称:HBONet,代码行数:51,代码来源:imagenet.py

示例13: test

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def test(testloader, model, criterion, epoch, use_cuda):
    global best_acc

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    bar = Bar('Processing', max=len(testloader))
    for batch_idx, (inputs, targets) in enumerate(testloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda()
        inputs, targets = torch.autograd.Variable(inputs, volatile=True), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(testloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:Eric-mingjie,项目名称:rethinking-network-pruning,代码行数:53,代码来源:cifar_prune.py

示例14: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    print(args)
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(async=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:Eric-mingjie,项目名称:rethinking-network-pruning,代码行数:57,代码来源:cifar.py

示例15: train

# 需要导入模块: import utils [as 别名]
# 或者: from utils import Bar [as 别名]
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
    # switch to train mode
    model.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    end = time.time()

    bar = Bar('Processing', max=len(trainloader))
    print(args)
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        # measure data loading time
        data_time.update(time.time() - end)

        if use_cuda:
            inputs, targets = inputs.cuda(), targets.cuda(async=True)
        inputs, targets = torch.autograd.Variable(inputs), torch.autograd.Variable(targets)

        # compute output
        outputs = model(inputs)
        loss = criterion(outputs, targets)

        # measure accuracy and record loss
        prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.data[0], inputs.size(0))
        top1.update(prec1[0], inputs.size(0))
        top5.update(prec5[0], inputs.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()

        for k, m in enumerate(model.modules()):
            if isinstance(m, nn.Conv2d):
                weight_copy = m.weight.data.abs().clone()
                mask = weight_copy.gt(0).float().cuda()
                m.weight.grad.data.mul_(mask)
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        # plot progress
        bar.suffix  = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
                    batch=batch_idx + 1,
                    size=len(trainloader),
                    data=data_time.avg,
                    bt=batch_time.avg,
                    total=bar.elapsed_td,
                    eta=bar.eta_td,
                    loss=losses.avg,
                    top1=top1.avg,
                    top5=top5.avg,
                    )
        bar.next()
    bar.finish()
    return (losses.avg, top1.avg) 
开发者ID:Eric-mingjie,项目名称:rethinking-network-pruning,代码行数:63,代码来源:cifar_B.py


注:本文中的utils.Bar方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。