当前位置: 首页>>代码示例>>Python>>正文


Python utils.AvgrageMeter方法代码示例

本文整理汇总了Python中utils.AvgrageMeter方法的典型用法代码示例。如果您正苦于以下问题:Python utils.AvgrageMeter方法的具体用法?Python utils.AvgrageMeter怎么用?Python utils.AvgrageMeter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils.AvgrageMeter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def valid(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, (input, target) in enumerate(valid_queue):
            input = input.cuda()
            target = target.cuda()
        
            logits, _ = model(input)
            loss = criterion(logits, target)
        
            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            objs.update(loss.data, n)
            top1.update(prec1.data, n)
            top5.update(prec5.data, n)
        
            if (step+1) % 100 == 0:
                logging.info('valid %03d %e %f %f', step+1, objs.avg, top1.avg, top5.avg)

    return top1.avg, top5.avg, objs.avg 
开发者ID:renqianluo,项目名称:NAO_pytorch,代码行数:25,代码来源:train_imagenet.py

示例2: nao_valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def nao_valid(queue, model):
    pa = utils.AvgrageMeter()
    hs = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, sample in enumerate(queue):
            encoder_input = sample['encoder_input']
            encoder_target = sample['encoder_target']
            decoder_target = sample['decoder_target']
            
            encoder_input = encoder_input.cuda()
            encoder_target = encoder_target.cuda()
            decoder_target = decoder_target.cuda()
            
            predict_value, logits, arch = model(encoder_input)
            n = encoder_input.size(0)
            pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(),
                                                predict_value.data.squeeze().tolist())
            hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist())
            pa.update(pairwise_acc, n)
            hs.update(hamming_dis, n)
    return pa.avg, hs.avg 
开发者ID:renqianluo,项目名称:NAO_pytorch,代码行数:24,代码来源:test_controller.py

示例3: valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def valid(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, (input, target) in enumerate(valid_queue):
            input = input.cuda()
            target = target.cuda()
        
            logits, _ = model(input)
            loss = criterion(logits, target)
        
            prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
            n = input.size(0)
            objs.update(loss.data, n)
            top1.update(prec1.data, n)
            top5.update(prec5.data, n)
        
            if (step+1) % 100 == 0:
                logging.info('valid %03d %e %f %f', step+1, objs.avg, top1.avg, top5.avg)

    return top1.avg, objs.avg 
开发者ID:renqianluo,项目名称:NAO_pytorch,代码行数:25,代码来源:train_cifar.py

示例4: nao_valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def nao_valid(queue, model):
    pa = utils.AvgrageMeter()
    hs = utils.AvgrageMeter()
    mse = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, sample in enumerate(queue):
            encoder_input = sample['encoder_input']
            encoder_target = sample['encoder_target']
            decoder_target = sample['decoder_target']
            
            encoder_input = encoder_input.cuda()
            encoder_target = encoder_target.cuda()
            decoder_target = decoder_target.cuda()
            
            predict_value, logits, arch = model(encoder_input)
            n = encoder_input.size(0)
            pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(),
                                                predict_value.data.squeeze().tolist())
            hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist())
            mse.update(F.mse_loss(predict_value.data.squeeze(), encoder_target.data.squeeze()), n)
            pa.update(pairwise_acc, n)
            hs.update(hamming_dis, n)
    return mse.avg, pa.avg, hs.avg 
开发者ID:renqianluo,项目名称:NAO_pytorch,代码行数:26,代码来源:train_controller.py

示例5: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = Variable(input, volatile=True).cuda()
    target = Variable(target, volatile=True).cuda(async=True)

    logits, _ = model(input)
    loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data[0], n)
    top1.update(prec1.data[0], n)
    top5.update(prec5.data[0], n)

    if step % args.report_freq == 0:
      logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, top5.avg, objs.avg 
开发者ID:kcyu2014,项目名称:eval-nas,代码行数:25,代码来源:train_imagenet.py

示例6: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(test_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(test_queue):
    input = Variable(input, volatile=True).cuda()
    target = Variable(target, volatile=True).cuda(async=True)

    logits, _ = model(input)
    loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data[0], n)
    top1.update(prec1.data[0], n)
    top5.update(prec5.data[0], n)

    if step % args.report_freq == 0:
      logging.info('test %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:kcyu2014,项目名称:eval-nas,代码行数:25,代码来源:test.py

示例7: nao_valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def nao_valid(queue, model):
    pa = utils.AvgrageMeter()
    hs = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, sample in enumerate(queue):
            encoder_input = sample['encoder_input']
            encoder_target = sample['encoder_target']
            decoder_target = sample['decoder_target']
            
            encoder_input = encoder_input.cuda()
            encoder_target = encoder_target.cuda()
            decoder_target = decoder_target.cuda()
            
            predict_value, logits, arch = model(encoder_input)
            n = encoder_input.size(0)
            pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(), predict_value.data.squeeze().tolist())
            hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist())
            pa.update(pairwise_acc, n)
            hs.update(hamming_dis, n)
    return pa.avg, hs.avg 
开发者ID:kcyu2014,项目名称:eval-nas,代码行数:23,代码来源:train_search.py

示例8: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = Variable(input, volatile=True).cuda()
    target = Variable(target, volatile=True).cuda(async=True)

    logits = model(input)
    loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data[0], n)
    top1.update(prec1.data[0], n)
    top5.update(prec5.data[0], n)

    if step % args.report_freq == 0:
      logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:quark0,项目名称:darts,代码行数:25,代码来源:train_search.py

示例9: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = Variable(input, volatile=True).cuda()
    target = Variable(target, volatile=True).cuda(async=True)

    logits, _ = model(input)
    loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data[0], n)
    top1.update(prec1.data[0], n)
    top5.update(prec5.data[0], n)

    if step % args.report_freq == 0:
      logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:quark0,项目名称:darts,代码行数:25,代码来源:train.py

示例10: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = input.cuda()
    target = target.cuda(non_blocking=True)
    #input = Variable(input).cuda()
    #target = Variable(target).cuda(async=True)
    with torch.no_grad():
      logits = model(input)
      loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data.item(), n)
    top1.update(prec1.data.item(), n)
    top5.update(prec5.data.item(), n)

    if step % args.report_freq == 0:
      logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:27,代码来源:train_search.py

示例11: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(valid_queue):
    input = input.cuda(non_blocking=True)
    target = target.cuda(non_blocking=True)
    #input = Variable(input).cuda()
    #target = Variable(target).cuda(async=True)
    with torch.no_grad():
      logits, _ = model(input)
      loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data.item(), n)
    top1.update(prec1.data.item(), n)
    top5.update(prec5.data.item(), n)

    if step % args.report_freq == 0:
      logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:27,代码来源:train.py

示例12: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    top5 = utils.AvgrageMeter()
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        input = input.cuda()
        target = target.cuda(non_blocking=True)
        with torch.no_grad():
            logits = model(input)
            loss = criterion(logits, target)

        prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
        n = input.size(0)
        objs.update(loss.data.item(), n)
        top1.update(prec1.data.item(), n)
        top5.update(prec5.data.item(), n)

        if step % args.report_freq == 0:
            logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

    return top1.avg, objs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:25,代码来源:train_search.py

示例13: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(test_queue, model, criterion):
  objs = utils.AvgrageMeter()
  top1 = utils.AvgrageMeter()
  top5 = utils.AvgrageMeter()
  model.eval()

  for step, (input, target) in enumerate(test_queue):
    input = input.cuda()
    target = target.cuda()
    with torch.no_grad():
        logits, _ = model(input)
        loss = criterion(logits, target)

    prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
    n = input.size(0)
    objs.update(loss.data.item(), n)
    top1.update(prec1.data.item(), n)
    top5.update(prec5.data.item(), n)

    if step % args.report_freq == 0:
      logging.info('test %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)

  return top1.avg, objs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:25,代码来源:test.py

示例14: infer

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def infer(valid_queue, model, criterion):
    objs = utils.AvgrageMeter()
    top1 = utils.AvgrageMeter()
    model.eval()

    for step, (input, target) in enumerate(valid_queue):
        input = input.cuda(non_blocking=True)
        target = target.cuda(non_blocking=True)
        with torch.no_grad():
            logits, _ = model(input)
            loss = criterion(logits, target)

        prec1, _ = utils.accuracy(logits, target, topk=(1,5))
        n = input.size(0)
        objs.update(loss.data.item(), n)
        top1.update(prec1.data.item(), n)

        if step % args.report_freq == 0:
            logging.info('Valid Step: %03d Objs: %e Acc: %f', step, objs.avg, top1.avg)

    return top1.avg, objs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:23,代码来源:train_cifar.py

示例15: nao_valid

# 需要导入模块: import utils [as 别名]
# 或者: from utils import AvgrageMeter [as 别名]
def nao_valid(queue, model):
    pa = utils.AvgrageMeter()
    hs = utils.AvgrageMeter()
    with torch.no_grad():
        model.eval()
        for step, sample in enumerate(queue):
            encoder_input = sample['encoder_input']
            encoder_target = sample['encoder_target']
            decoder_target = sample['decoder_target']

            encoder_input = encoder_input.cuda()
            encoder_target = encoder_target.cuda()
            decoder_target = decoder_target.cuda()

            predict_value, logits, arch = model(encoder_input)
            n = encoder_input.size(0)
            pairwise_acc = utils.pairwise_accuracy(encoder_target.data.squeeze().tolist(),
                                                   predict_value.data.squeeze().tolist())
            hamming_dis = utils.hamming_distance(decoder_target.data.squeeze().tolist(), arch.data.squeeze().tolist())
            pa.update(pairwise_acc, n)
            hs.update(hamming_dis, n)
    return pa.avg, hs.avg 
开发者ID:antoyang,项目名称:NAS-Benchmark,代码行数:24,代码来源:train_search.py


注:本文中的utils.AvgrageMeter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。