当前位置: 首页>>代码示例>>Python>>正文


Python visualizer.Visualizer方法代码示例

本文整理汇总了Python中util.visualizer.Visualizer方法的典型用法代码示例。如果您正苦于以下问题:Python visualizer.Visualizer方法的具体用法?Python visualizer.Visualizer怎么用?Python visualizer.Visualizer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在util.visualizer的用法示例。


在下文中一共展示了visualizer.Visualizer方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: initialize

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def initialize(self, opt):
        self.opt = opt
        self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2
        self.gpu_ids = ''
        self.batchSize = self.opt.batchSize
        self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name)
        self.create_save_folders()

        self.netG = self.load_network()
        # st()
        if 'vaihingen' not in self.opt.dataset_name:
            self.data_loader, _ = CreateDataLoader(opt)

        # visualizer
        self.visualizer = Visualizer(self.opt)
        if 'semantics' in self.opt.tasks:
            from util.util import get_color_palette
            self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name))
            self.opt.color_palette = list(self.opt.color_palette.reshape(-1)) 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:21,代码来源:mtl_test.py

示例2: main

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def main():
    opt = TrainOptions().parse()
    data_loader = CreateDataLoader(opt)
    dataset_size = len(data_loader) * opt.batch_size
    visualizer = Visualizer(opt)
    model = create_model(opt)    
    start_epoch = model.start_epoch
    total_steps = start_epoch*dataset_size
    for epoch in range(start_epoch+1, opt.niter+opt.niter_decay+1):
        epoch_start_time = time.time()
        model.update_lr()
        save_result = True
        for i, data in enumerate(data_loader):
            iter_start_time = time.time()
            total_steps += opt.batch_size
            epoch_iter = total_steps - dataset_size * (epoch - 1)
            model.prepare_data(data)
            model.update_model()
            if save_result or total_steps % opt.display_freq == 0:
                save_result = save_result or total_steps % opt.update_html_freq == 0
                visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result)
                save_result = False
            if total_steps % opt.print_freq == 0:
                errors = model.get_current_errors()
                t = (time.time() - iter_start_time) / opt.batch_size
                visualizer.print_current_errors(epoch, epoch_iter, errors, t)
                if opt.display_id > 0:
                    visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
        print('epoch {} cost dime {}'.format(epoch,time.time()-epoch_start_time))
        model.save_ckpt(epoch)
        model.save_generator('latest')
        if epoch % opt.save_epoch_freq == 0:
            print('saving the generator at the end of epoch {}, iters {}'.format(epoch, total_steps))
            model.save_generator(epoch) 
开发者ID:Xiaoming-Yu,项目名称:DMIT,代码行数:36,代码来源:train.py

示例3: test_func

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def test_func(opt_train, webpage, epoch='latest'):
	opt = copy.deepcopy(opt_train)
	print(opt)
	# specify the directory to save the results during training
	opt.results_dir = './results/'
	opt.isTrain = False
	opt.nThreads = 1   # test code only supports nThreads = 1
	opt.batchSize = 1  # test code only supports batchSize = 1
	opt.serial_batches = True  # no shuffle
	opt.no_flip = True  # no flip
	opt.dataroot = opt.dataroot + '/test'
	opt.model = 'test'
	opt.dataset_mode = 'single'
	opt.which_epoch = epoch
	opt.how_many = 50
	opt.phase = 'test'
	# opt.name = name

	data_loader = CreateDataLoader(opt)
	dataset = data_loader.load_data()
	model = create_model(opt)
	visualizer = Visualizer(opt)
	# create website
	# web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
	# web_dir = os.path.join(opt.results_dir, opt.name)
	# webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
	# test
	for i, data in enumerate(dataset):
	    if i >= opt.how_many:
	        break
	    model.set_input(data)
	    model.test()
	    visuals = model.get_current_visuals()
	    img_path = model.get_image_paths()
	    print('process image... %s' % img_path)
	    visualizer.save_images_epoch(webpage, visuals, img_path, epoch)

	webpage.save() 
开发者ID:jessemelpolio,项目名称:non-stationary_texture_syn,代码行数:40,代码来源:test_function.py

示例4: initialize

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def initialize(self, opt):
        # GenericTestModel.initialize(self, opt)
        self.opt = opt
        self.get_color_palette()
        self.opt.imageSize = self.opt.imageSize if len(self.opt.imageSize) == 2 else self.opt.imageSize * 2
        self.gpu_ids = ''
        self.batchSize = self.opt.batchSize
        self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name)
        self.create_save_folders()
        self.opt.use_semantics = (('multitask' in self.opt.model) or ('semantics' in self.opt.model))

        self.netG = self.load_network()
        # self.opt.dfc_preprocessing = 2
        # self.data_loader, _ = CreateDataLoader(opt, Dataset)

        # visualizer
        self.visualizer = Visualizer(self.opt)
        if 'semantics' in self.opt.tasks:
            from util.util import get_color_palette
            self.opt.color_palette = np.array(get_color_palette(self.opt.dataset_name))
            # self.opt.color_palette = list(self.opt.color_palette.reshape(-1))
            # st()

    # def initialize(self, opt):
    #     GenericTestModel.initialize(self, opt)
    #     self.get_color_palette() 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:28,代码来源:test_model_raster.py

示例5: initialize

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def initialize(self, opt):
        self.opt = opt
        self.gpu_ids = ''
        self.batchSize = self.opt.batchSize
        self.checkpoints_path = os.path.join(self.opt.checkpoints, self.opt.name)
        self.create_save_folders()

        self.start_epoch = 1
        self.best_val_error = 999.9

        self.criterion_eval = nn.L1Loss()

        self.input = self.get_variable(torch.FloatTensor(self.batchSize, 3, self.opt.imageSize, self.opt.imageSize))
        self.target = self.get_variable(torch.FloatTensor(self.batchSize, 1, self.opt.imageSize, self.opt.imageSize))
        # self.logfile = # ToDo

        # visualizer
        self.visualizer = Visualizer(opt)

        # Logfile
        self.logfile = open(os.path.join(self.checkpoints_path, 'logfile.txt'), 'a')
        if opt.validate:
            self.logfile_val = open(os.path.join(self.checkpoints_path, 'logfile_val.txt'), 'a')

        # Prepare a random seed that will be the same for everyone
        opt.manualSeed = random.randint(1, 10000)   # fix seed
        print("Random Seed: ", opt.manualSeed)
        random.seed(opt.manualSeed)
        torch.manual_seed(opt.manualSeed)
        if opt.cuda:
            torch.cuda.manual_seed(opt.manualSeed)

        # uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms.
        cudnn.benchmark = True
        cudnn.enabled =   True

        if not opt.train and not opt.test:
            raise Exception("You have to set --train or --test")

        if torch.cuda.is_available and not opt.cuda:
            print("WARNING: You have a CUDA device, so you should run WITHOUT --cpu")
        if not torch.cuda.is_available and opt.cuda:
            raise Exception("No GPU found, run WITH --cpu") 
开发者ID:marcelampc,项目名称:aerial_mtl,代码行数:45,代码来源:base_model.py

示例6: main

# 需要导入模块: from util import visualizer [as 别名]
# 或者: from util.visualizer import Visualizer [as 别名]
def main():
    opt = TrainOptions().parse()
    data_loader = CreateDataLoader(opt)
    dataset_size = len(data_loader) * opt.batchSize
    visualizer = Visualizer(opt)


    model = SingleGAN()
    model.initialize(opt)


    total_steps = 0
    lr = opt.lr
    for epoch in range(1, opt.niter + opt.niter_decay + 1):
        epoch_start_time = time.time()
        save_result = True
        for i, data in enumerate(data_loader):
            iter_start_time = time.time()
            total_steps += opt.batchSize
            epoch_iter = total_steps - dataset_size * (epoch - 1)
            model.update_model(data)
            
            if save_result or total_steps % opt.display_freq == 0:
                save_result = save_result or total_steps % opt.update_html_freq == 0
                print('mode:{} dataset:{}'.format(opt.mode,opt.name))
                visualizer.display_current_results(model.get_current_visuals(), epoch, ncols=1, save_result=save_result)
                save_result = False
            
            if total_steps % opt.print_freq == 0:
                errors = model.get_current_errors()
                t = (time.time() - iter_start_time) / opt.batchSize
                visualizer.print_current_errors(epoch, epoch_iter, errors, t)
                if opt.display_id > 0:
                    visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
                    
            if total_steps % opt.save_latest_freq == 0:
                print('saving the latest model (epoch %d, total_steps %d)' %(epoch, total_steps))
                model.save('latest')
                
        if epoch % opt.save_epoch_freq == 0:
            print('saving the model at the end of epoch %d, iters %d' %(epoch, total_steps))
            model.save('latest')
            model.save(epoch)
            
        if epoch > opt.niter:
            lr -= opt.lr / opt.niter_decay
            model.update_lr(lr) 
开发者ID:Xiaoming-Yu,项目名称:SingleGAN,代码行数:49,代码来源:train.py


注:本文中的util.visualizer.Visualizer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。