当前位置: 首页>>代码示例>>Python>>正文


Python util.make_summary方法代码示例

本文整理汇总了Python中util.make_summary方法的典型用法代码示例。如果您正苦于以下问题:Python util.make_summary方法的具体用法?Python util.make_summary怎么用?Python util.make_summary使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在util的用法示例。


在下文中一共展示了util.make_summary方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, official_stdout=False):
    self.load_eval_data()

    coref_predictions = {}
    coref_evaluator = metrics.CorefEvaluator()

    for example_num, (tensorized_example, example) in enumerate(self.eval_data):
      _, _, _, _, _, _, _, _, _, gold_starts, gold_ends, _ = tensorized_example
      feed_dict = {i:t for i,t in zip(self.input_tensors, tensorized_example)}
      candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores = session.run(self.predictions, feed_dict=feed_dict)
      predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
      coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends, predicted_antecedents, example["clusters"], coref_evaluator)
      if example_num % 10 == 0:
        print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

    summary_dict = {}
    conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, official_stdout)
    average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
    summary_dict["Average F1 (conll)"] = average_f1
    print("Average F1 (conll): {:.2f}%".format(average_f1))

    p,r,f = coref_evaluator.get_prf()
    summary_dict["Average F1 (py)"] = f
    print("Average F1 (py): {:.2f}%".format(f * 100))
    summary_dict["Average precision (py)"] = p
    print("Average precision (py): {:.2f}%".format(p * 100))
    summary_dict["Average recall (py)"] = r
    print("Average recall (py): {:.2f}%".format(r * 100))

    return util.make_summary(summary_dict), average_f1 
开发者ID:kentonl,项目名称:e2e-coref,代码行数:32,代码来源:coref_model.py

示例2: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, global_step=None, official_stdout=False, keys=None, eval_mode=False):
    self.load_eval_data()

    coref_predictions = {}
    coref_evaluator = metrics.CorefEvaluator()
    losses = []
    doc_keys = []
    num_evaluated= 0

    for example_num, (tensorized_example, example) in enumerate(self.eval_data):
      _, _, _, _, _, _, gold_starts, gold_ends, _, _ = tensorized_example
      feed_dict = {i:t for i,t in zip(self.input_tensors, tensorized_example)}
      # if tensorized_example[0].shape[0] <= 9:
      if keys is not None and example['doc_key'] not in keys:
        # print('Skipping...', example['doc_key'], tensorized_example[0].shape)
        continue
      doc_keys.append(example['doc_key'])
      loss, (candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores) = session.run([self.loss, self.predictions], feed_dict=feed_dict)
      # losses.append(session.run(self.loss, feed_dict=feed_dict))
      losses.append(loss)
      predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
      coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends, predicted_antecedents, example["clusters"], coref_evaluator)
      if example_num % 10 == 0:
        print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

    summary_dict = {}
    if eval_mode:
      conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, self.subtoken_maps, official_stdout )
      average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
      summary_dict["Average F1 (conll)"] = average_f1
      print("Average F1 (conll): {:.2f}%".format(average_f1))

    p,r,f = coref_evaluator.get_prf()
    summary_dict["Average F1 (py)"] = f
    print("Average F1 (py): {:.2f}% on {} docs".format(f * 100, len(doc_keys)))
    summary_dict["Average precision (py)"] = p
    print("Average precision (py): {:.2f}%".format(p * 100))
    summary_dict["Average recall (py)"] = r
    print("Average recall (py): {:.2f}%".format(r * 100))

    return util.make_summary(summary_dict), f 
开发者ID:mandarjoshi90,项目名称:coref,代码行数:43,代码来源:independent.py

示例3: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, official_stdout=False, pprint=False, test=False):
        self.load_eval_data()

        coref_predictions = {}
        coref_evaluator = metrics.CorefEvaluator()

        if not test:
            session.run(self.switch_to_test_mode_op)

        for example_num, (tensorized_example, example) in enumerate(self.eval_data):
            _, _, _, _, _, _, _, _, _, gold_starts, gold_ends, _ = tensorized_example
            feed_dict = {i: t for i, t in zip(self.input_tensors, tensorized_example)}

            candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores = session.run(
                self.predictions, feed_dict=feed_dict)

            predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
            coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends,
                                                                        predicted_antecedents, example["clusters"],
                                                                        coref_evaluator)

            if pprint:
                tokens = util.flatten(example["sentences"])
                print("GOLD CLUSTERS:")
                util.coref_pprint(tokens, example["clusters"])
                print("PREDICTED CLUSTERS:")
                util.coref_pprint(tokens, coref_predictions[example["doc_key"]])
                print('==================================================================')

            if example_num % 10 == 0:
                print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

        if not test:
            session.run(self.switch_to_train_mode_op)

        summary_dict = {}

        p, r, f = coref_evaluator.get_prf()
        average_f1 = f * 100
        summary_dict["Average F1 (py)"] = average_f1
        print("Average F1 (py): {:.2f}%".format(average_f1))
        summary_dict["Average precision (py)"] = p
        print("Average precision (py): {:.2f}%".format(p * 100))
        summary_dict["Average recall (py)"] = r
        print("Average recall (py): {:.2f}%".format(r * 100))

        # if test:
        #     conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, official_stdout)
        #     average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
        #     summary_dict["Average F1 (conll)"] = average_f1
        #     print("Average F1 (conll): {:.2f}%".format(average_f1))

        return util.make_summary(summary_dict), average_f1 
开发者ID:kkjawz,项目名称:coref-ee,代码行数:55,代码来源:coref_model.py

示例4: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, official_stdout=False, pprint=False, test=False):
        self.load_eval_data()

        coref_predictions = {}
        coref_evaluator = metrics.CorefEvaluator()

        for example_num, (tensorized_example, example) in enumerate(self.eval_data):
            feed_dict = {self.input_tensors[k]: tensorized_example[k] for k in self.input_tensors}
            candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores = session.run(
                self.predictions, feed_dict=feed_dict)

            predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
            coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends,
                                                                        predicted_antecedents, example["clusters"],
                                                                        coref_evaluator)

            if pprint:
                tokens = util.flatten(example["sentences"])
                print("GOLD CLUSTERS:")
                util.coref_pprint(tokens, example["clusters"])
                print("PREDICTED CLUSTERS:")
                util.coref_pprint(tokens, coref_predictions[example["doc_key"]])
                print("==================================================================")

            if example_num % 10 == 0:
                print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

        summary_dict = {}

        p, r, f = coref_evaluator.get_prf()
        average_f1 = f * 100
        summary_dict["Average F1 (py)"] = average_f1
        print("Average F1 (py): {:.2f}%".format(average_f1))
        summary_dict["Average precision (py)"] = p
        print("Average precision (py): {:.2f}%".format(p * 100))
        summary_dict["Average recall (py)"] = r
        print("Average recall (py): {:.2f}%".format(r * 100))

        # if test:
        #     conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, official_stdout)
        #     average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
        #     summary_dict["Average F1 (conll)"] = average_f1
        #     print("Average F1 (conll): {:.2f}%".format(average_f1))

        return util.make_summary(summary_dict), average_f1 
开发者ID:kkjawz,项目名称:coref-ee,代码行数:47,代码来源:coref_bert_model_2.py

示例5: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, global_step=None, official_stdout=False, keys=None, eval_mode=False):
    self.load_eval_data()

    coref_predictions = {}
    coref_evaluator = metrics.CorefEvaluator()
    losses = []
    doc_keys = []
    num_evaluated= 0

    for example_num, (tensorized_example, example) in enumerate(self.eval_data):
      _, _, _, _, _, _, gold_starts, gold_ends, _, _ = tensorized_example
      feed_dict = {i:t for i,t in zip(self.input_tensors, tensorized_example)}
      # if tensorized_example[0].shape[0] <= 9:
      # if keys is not None and example['doc_key']  in keys:
        # print('Skipping...', example['doc_key'], tensorized_example[0].shape)
        # continue
      doc_keys.append(example['doc_key'])
      loss, (candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores) = session.run([self.loss, self.predictions], feed_dict=feed_dict)
      # losses.append(session.run(self.loss, feed_dict=feed_dict))
      losses.append(loss)
      predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
      coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends, predicted_antecedents, example["clusters"], coref_evaluator)
      if example_num % 10 == 0:
        print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

    summary_dict = {}
    # with open('doc_keys_512.txt', 'w') as f:
      # for key in doc_keys:
        # f.write(key + '\n')
    if eval_mode:
      conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, self.subtoken_maps, official_stdout )
      average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
      summary_dict["Average F1 (conll)"] = average_f1
      print("Average F1 (conll): {:.2f}%".format(average_f1))

    p,r,f = coref_evaluator.get_prf()
    summary_dict["Average F1 (py)"] = f
    print("Average F1 (py): {:.2f}% on {} docs".format(f * 100, len(doc_keys)))
    summary_dict["Average precision (py)"] = p
    print("Average precision (py): {:.2f}%".format(p * 100))
    summary_dict["Average recall (py)"] = r
    print("Average recall (py): {:.2f}%".format(r * 100))

    return util.make_summary(summary_dict), f 
开发者ID:mandarjoshi90,项目名称:coref,代码行数:46,代码来源:gold_mentions.py

示例6: evaluate

# 需要导入模块: import util [as 别名]
# 或者: from util import make_summary [as 别名]
def evaluate(self, session, global_step=None, official_stdout=False, keys=None, eval_mode=False):
    self.load_eval_data()

    coref_predictions = {}
    coref_evaluator = metrics.CorefEvaluator()
    losses = []
    doc_keys = []
    num_evaluated= 0

    for example_num, (tensorized_example, example) in enumerate(self.eval_data):
      _, _, _, _, _, _, _, _, gold_starts, gold_ends, _, _ = tensorized_example
      feed_dict = {i:t for i,t in zip(self.input_tensors, tensorized_example)}
      # if tensorized_example[0].shape[0] <= 9:
      # if keys is not None and example['doc_key']  in keys:
        # print('Skipping...', example['doc_key'], tensorized_example[0].shape)
        # continue
      doc_keys.append(example['doc_key'])
      loss, (candidate_starts, candidate_ends, candidate_mention_scores, top_span_starts, top_span_ends, top_antecedents, top_antecedent_scores) = session.run([self.loss, self.predictions], feed_dict=feed_dict)
      # losses.append(session.run(self.loss, feed_dict=feed_dict))
      losses.append(loss)
      predicted_antecedents = self.get_predicted_antecedents(top_antecedents, top_antecedent_scores)
      coref_predictions[example["doc_key"]] = self.evaluate_coref(top_span_starts, top_span_ends, predicted_antecedents, example["clusters"], coref_evaluator)
      if example_num % 10 == 0:
        print("Evaluated {}/{} examples.".format(example_num + 1, len(self.eval_data)))

    summary_dict = {}
    # with open('doc_keys_512.txt', 'w') as f:
      # for key in doc_keys:
        # f.write(key + '\n')
    if eval_mode:
      conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, self.subtoken_maps, official_stdout )
      average_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
      summary_dict["Average F1 (conll)"] = average_f1
      print("Average F1 (conll): {:.2f}%".format(average_f1))

    p,r,f = coref_evaluator.get_prf()
    summary_dict["Average F1 (py)"] = f
    print("Average F1 (py): {:.2f}% on {} docs".format(f * 100, len(doc_keys)))
    summary_dict["Average precision (py)"] = p
    print("Average precision (py): {:.2f}%".format(p * 100))
    summary_dict["Average recall (py)"] = r
    print("Average recall (py): {:.2f}%".format(r * 100))

    return util.make_summary(summary_dict), f 
开发者ID:mandarjoshi90,项目名称:coref,代码行数:46,代码来源:overlap.py


注:本文中的util.make_summary方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。