本文整理汇总了Python中util.image_pool.ImagePool方法的典型用法代码示例。如果您正苦于以下问题:Python image_pool.ImagePool方法的具体用法?Python image_pool.ImagePool怎么用?Python image_pool.ImagePool使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类util.image_pool
的用法示例。
在下文中一共展示了image_pool.ImagePool方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
self.isTrain = opt.isTrain
# specify the training losses you want to print out. The program will call base_model.get_current_losses
self.loss_names = ['G_GAN', 'G_L1', 'G_Ang', 'D_real', 'D_fake']
# specify the images you want to save/display. The program will call base_model.get_current_visuals
self.visual_names = ['real_A', 'fake_B', 'real_B']
# specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
if self.isTrain:
self.model_names = ['G', 'D']
else: # during test time, only load Gs
self.model_names = ['G']
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
self.fake_AB_pool = ImagePool(opt.pool_size)
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
self.criterionL1 = torch.nn.L1Loss()
self.criterionAngular = angular_loss.angular_loss()
# initialize optimizers
self.optimizers = []
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
示例2: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
self.isTrain = opt.isTrain
# specify the training losses you want to print out. The program will call base_model.get_current_losses
self.loss_names = ['G_GAN', 'G_L1', 'G_Ang', 'D_real', 'D_fake']
# specify the images you want to save/display. The program will call base_model.get_current_visuals
self.visual_names = ['real_A', 'fake_B', 'real_B']
# specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
if self.isTrain:
self.model_names = ['G', 'D']
else: # during test time, only load Gs
self.model_names = ['G']
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
self.fake_AB_pool = ImagePool(opt.pool_size)
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
self.criterionL1 = torch.nn.L1Loss()
self.criterionAngular = angular_loss.angular_loss()
# initialize optimizers
self.optimizers = []
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
示例3: __init__
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def __init__(self, opt):
"""Initialize the CycleGAN class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
BaseModel.__init__(self, opt)
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
visual_names_A = ['real_A', 'fake_B', 'rec_A']
visual_names_B = ['real_B', 'fake_A', 'rec_B']
if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B)
visual_names_A.append('idt_B')
visual_names_B.append('idt_A')
self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
if self.isTrain:
self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
else: # during test time, only load Gs
self.model_names = ['G_A', 'G_B']
# define networks (both Generators and discriminators)
# The naming is different from those used in the paper.
# Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain: # define discriminators
self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels
assert(opt.input_nc == opt.output_nc)
self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
# define loss functions
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss.
self.criterionCycle = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:53,代码来源:cycle_gan_model.py
示例4: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
nb = opt.batchSize
size = opt.fineSize
self.input_A = self.Tensor(nb, opt.input_nc, size, size)
self.input_B = self.Tensor(nb, opt.output_nc, size, size)
# load/define networks
# The naming conversion is different from those used in the paper
# Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
if not self.isTrain or opt.continue_train:
which_epoch = opt.which_epoch
self.load_network(self.netG_A, 'G_A', which_epoch)
self.load_network(self.netG_B, 'G_B', which_epoch)
if self.isTrain:
self.load_network(self.netD_A, 'D_A', which_epoch)
self.load_network(self.netD_B, 'D_B', which_epoch)
if self.isTrain:
self.old_lr = opt.lr
self.fake_A_pool = ImagePool(opt.pool_size)
self.fake_B_pool = ImagePool(opt.pool_size)
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionCycle = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers = []
self.schedulers = []
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D_A)
self.optimizers.append(self.optimizer_D_B)
for optimizer in self.optimizers:
self.schedulers.append(networks.get_scheduler(optimizer, opt))
print('---------- Networks initialized -------------')
networks.print_network(self.netG_A)
networks.print_network(self.netG_B)
if self.isTrain:
networks.print_network(self.netD_A)
networks.print_network(self.netD_B)
print('-----------------------------------------------')
示例5: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
self.isTrain = opt.isTrain
# define tensors
self.input_A = self.Tensor(opt.batchSize, opt.input_nc,
opt.fineSize, opt.fineSize)
self.input_B = self.Tensor(opt.batchSize, opt.output_nc,
opt.fineSize, opt.fineSize)
self.label = self.Tensor(opt.batchSize,1)
if opt.nz>0:
self.noise=self.Tensor(opt.batchSize,opt.nz)
# load/define networks
opt.which_model_netG = 'StochasticLabelBetaChannelGatedResnetConvResnetG'
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids,opt)
if self.isTrain:
use_sigmoid = opt.no_lsgan
opt.which_model_netD = 'LabelChannelGatedResnetConvResnetD'
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids,opt)
self.netD.cuda()
self.netG.cuda()
if not self.isTrain or opt.continue_train:
self.load_network(self.netG, 'G', opt.which_epoch)
if self.isTrain:
self.load_network(self.netD, 'D', opt.which_epoch)
if self.isTrain:
self.fake_AB_pool = ImagePool(opt.pool_size)
self.old_lr = opt.lr
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionL1 = torch.nn.L1Loss()
# initialize optimizers
self.schedulers = []
self.optimizers = []
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=opt.lr_g, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
lr=opt.lr_d, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
for optimizer in self.optimizers:
self.schedulers.append(networks.get_scheduler(optimizer, opt))
print('---------- Networks initialized -------------')
networks.print_network(self.netG)
if self.isTrain:
networks.print_network(self.netD)
print('-----------------------------------------------')
示例6: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
self.isTrain = opt.isTrain
# define tensors
self.input_A = self.Tensor(opt.batchSize, opt.input_nc,
int(opt.fineSize / 2), int(opt.fineSize / 2))
self.input_B = self.Tensor(opt.batchSize, opt.output_nc,
opt.fineSize, opt.fineSize)
self.style_layers = ['r11', 'r21', 'r31', 'r41', 'r51']
# self.content_layers = ['r42']
self.loss_layers = self.style_layers
self.loss_fns = [GramMSELoss()] * len(self.style_layers)
if torch.cuda.is_available():
self.loss_fns = [loss_fn.cuda() for loss_fn in self.loss_fns]
self.vgg = VGG()
self.vgg.load_state_dict(torch.load(os.getcwd() + '/Models/' + 'vgg_conv.pth'))
for param in self.vgg.parameters():
param.requires_grad = False
if torch.cuda.is_available():
self.vgg.cuda()
print(self.vgg.state_dict().keys())
self.style_weights = [1e3 / n ** 2 for n in [64, 128, 256, 512, 512]]
# self.content_weights = [1e0]
self.weights = self.style_weights
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.which_model_netG, opt.norm, not opt.no_dropout, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD = networks.define_D(opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, self.gpu_ids)
if not self.isTrain or opt.continue_train:
self.load_network(self.netG, 'G', opt.which_epoch)
if self.isTrain:
self.load_network(self.netD, 'D', opt.which_epoch)
if self.isTrain:
self.fake_AB_pool = ImagePool(opt.pool_size)
self.old_lr = opt.lr
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
self.criterionL1 = torch.nn.L1Loss()
# initialize optimizers
self.optimizer_G = torch.optim.Adam(self.netG.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(),
lr=opt.lr, betas=(opt.beta1, 0.999))
print('---------- Networks initialized -------------')
networks.print_network(self.netG)
if self.isTrain:
networks.print_network(self.netD)
print('-----------------------------------------------')
示例7: initialize
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def initialize(self, opt):
BaseModel.initialize(self, opt)
# specify the training losses you want to print out. The program will call base_model.get_current_losses
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
# specify the images you want to save/display. The program will call base_model.get_current_visuals
visual_names_A = ['real_A', 'fake_B', 'rec_A']
visual_names_B = ['real_B', 'fake_A', 'rec_B']
if self.isTrain and self.opt.lambda_identity > 0.0:
visual_names_A.append('idt_A')
visual_names_B.append('idt_B')
self.visual_names = visual_names_A + visual_names_B
# specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks
if self.isTrain:
self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
else: # during test time, only load Gs
self.model_names = ['G_A', 'G_B']
# load/define networks
# The naming conversion is different from those used in the paper
# Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc,
opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
if self.isTrain:
use_sigmoid = opt.no_lsgan
self.netD_A = networks.define_D(opt.output_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
self.netD_B = networks.define_D(opt.input_nc, opt.ndf,
opt.which_model_netD,
opt.n_layers_D, opt.norm, use_sigmoid, opt.init_type, self.gpu_ids)
if self.isTrain:
self.fake_A_pool = ImagePool(opt.pool_size)
self.fake_B_pool = ImagePool(opt.pool_size)
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan).to(self.device)
self.criterionCycle = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()),
lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers = []
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
示例8: __init__
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def __init__(self, opt):
"""Initialize the CycleGAN class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
BaseModel.__init__(self, opt)
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B']
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
visual_names_A = ['real_A', 'fake_B', 'rec_A']
visual_names_B = ['real_B', 'fake_A', 'rec_B']
if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize G_B(A) ad G_A(B)
visual_names_A.append('idt_A')
visual_names_B.append('idt_B')
self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
if self.isTrain:
self.model_names = ['G_A', 'G_B', 'D_A', 'D_B']
else: # during test time, only load Gs
self.model_names = ['G_A', 'G_B']
# define networks (both Generators and discriminators)
# The naming is different from those used in the paper.
# Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm,
not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain: # define discriminators
self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD,
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD,
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels
assert(opt.input_nc == opt.output_nc)
self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images
# define loss functions
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss.
self.criterionCycle = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
示例9: __init__
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def __init__(self, opt):
super(ComboGANModel, self).__init__(opt)
self.n_domains = opt.n_domains
self.DA, self.DB = None, None
self.real_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.real_B = self.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.netG_n_blocks, opt.netG_n_shared,
self.n_domains, opt.norm, opt.use_dropout, self.gpu_ids)
if self.isTrain:
self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD_n_layers,
self.n_domains, self.Tensor, opt.norm, self.gpu_ids)
if not self.isTrain or opt.continue_train:
which_epoch = opt.which_epoch
self.load_network(self.netG, 'G', which_epoch)
if self.isTrain:
self.load_network(self.netD, 'D', which_epoch)
if self.isTrain:
self.fake_pools = [ImagePool(opt.pool_size) for _ in range(self.n_domains)]
# define loss functions
self.L1 = torch.nn.SmoothL1Loss()
self.downsample = torch.nn.AvgPool2d(3, stride=2)
self.criterionCycle = self.L1
self.criterionIdt = lambda y,t : self.L1(self.downsample(y), self.downsample(t))
self.criterionLatent = lambda y,t : self.L1(y, t.detach())
self.criterionGAN = lambda r,f,v : (networks.GANLoss(r[0],f[0],v) + \
networks.GANLoss(r[1],f[1],v) + \
networks.GANLoss(r[2],f[2],v)) / 3
# initialize optimizers
self.netG.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
self.netD.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
# initialize loss storage
self.loss_D, self.loss_G = [0]*self.n_domains, [0]*self.n_domains
self.loss_cycle = [0]*self.n_domains
# initialize loss multipliers
self.lambda_cyc, self.lambda_enc = opt.lambda_cycle, (0 * opt.lambda_latent)
self.lambda_idt, self.lambda_fwd = opt.lambda_identity, opt.lambda_forward
print('---------- Networks initialized -------------')
print(self.netG)
if self.isTrain:
print(self.netD)
print('-----------------------------------------------')
示例10: __init__
# 需要导入模块: from util import image_pool [as 别名]
# 或者: from util.image_pool import ImagePool [as 别名]
def __init__(self, opt):
super(ComboGANModel, self).__init__(opt)
self.n_domains = opt.n_domains
self.DA, self.DB = None, None
self.real_A = self.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
self.real_B = self.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
# load/define networks
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf,
opt.netG_n_blocks, opt.netG_n_shared,
self.n_domains, opt.norm, opt.use_dropout, self.gpu_ids)
if self.isTrain:
blur_fn = lambda x : torch.nn.functional.conv2d(x, self.Tensor(util.gkern_2d()), groups=3, padding=2)
self.netD = networks.define_D(opt.output_nc, opt.ndf, opt.netD_n_layers,
self.n_domains, blur_fn, opt.norm, self.gpu_ids)
if not self.isTrain or opt.continue_train:
which_epoch = opt.which_epoch
self.load_network(self.netG, 'G', which_epoch)
if self.isTrain:
self.load_network(self.netD, 'D', which_epoch)
if self.isTrain:
self.fake_pools = [ImagePool(opt.pool_size) for _ in range(self.n_domains)]
# define loss functions
self.L1 = torch.nn.SmoothL1Loss()
self.downsample = torch.nn.AvgPool2d(3, stride=2)
self.criterionCycle = self.L1
self.criterionIdt = lambda y,t : self.L1(self.downsample(y), self.downsample(t))
self.criterionLatent = lambda y,t : self.L1(y, t.detach())
self.criterionGAN = networks.GANLoss(use_lsgan=not opt.no_lsgan, tensor=self.Tensor)
# initialize optimizers
self.netG.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
self.netD.init_optimizers(torch.optim.Adam, opt.lr, (opt.beta1, 0.999))
# initialize loss storage
self.loss_D, self.loss_G = [0]*self.n_domains, [0]*self.n_domains
self.loss_cycle = [0]*self.n_domains
# initialize loss multipliers
self.lambda_cyc, self.lambda_enc = opt.lambda_cycle, (0 * opt.lambda_latent)
self.lambda_idt, self.lambda_fwd = opt.lambda_identity, opt.lambda_forward
print('---------- Networks initialized -------------')
print(self.netG)
if self.isTrain:
print(self.netD)
print('-----------------------------------------------')