本文整理汇总了Python中tvm.relay方法的典型用法代码示例。如果您正苦于以下问题:Python tvm.relay方法的具体用法?Python tvm.relay怎么用?Python tvm.relay使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tvm
的用法示例。
在下文中一共展示了tvm.relay方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_graph_relay
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def build_graph_relay(args, ctx, onnx_model, inputs, input_names):
import tvm.relay as relay
shape_dict = {}
dtype_dict = {}
for name, value in zip(input_names, inputs.values()):
shape_dict[name] = value.shape
dtype_dict[name] = value.dtype
mod, params = relay.frontend.from_onnx(onnx_model, shape=shape_dict)
with relay.build_config(opt_level=args.opt_level):
graph, lib, params = relay.build(mod, args.target, params=params)
if args.dump_frontend:
print(graph)
graph_module = create_graph_module(args, graph, lib, ctx)
set_inputs(graph_module, ctx, inputs, params)
return graph_module
示例2: relay_max_pool2d_grad
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def relay_max_pool2d_grad(c, img, psize, stride, pad, dil, ceil_mode, dout):
assert psize.is_constant(tuple)
assert stride.is_constant(tuple)
assert pad.is_constant(tuple)
assert dil.is_constant(tuple)
assert ceil_mode.is_constant(bool)
assert dil.value == (1, 1)
return relay.nn.max_pool2d_grad(
c.ref(dout),
c.ref(img),
psize.value,
stride.value,
pad.value,
ceil_mode=ceil_mode.value,
)
示例3: torch2tvm_module
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def torch2tvm_module(torch_module: torch.nn.Module, torch_inputs: Tuple[torch.Tensor, ...], target):
torch_module.eval()
input_names = []
input_shapes = {}
with torch.no_grad():
for index, torch_input in enumerate(torch_inputs):
name = "i" + str(index)
input_names.append(name)
input_shapes[name] = torch_input.shape
buffer = io.BytesIO()
torch.onnx.export(torch_module, torch_inputs, buffer, input_names=input_names, output_names=["o" + str(i) for i in range(len(torch_inputs))])
outs = torch_module(*torch_inputs)
buffer.seek(0, 0)
onnx_model = onnx.load_model(buffer)
relay_module, params = tvm.relay.frontend.from_onnx(onnx_model, shape=input_shapes)
with tvm.relay.build_config(opt_level=3):
graph, tvm_module, params = tvm.relay.build(relay_module, target, params=params)
return graph, tvm_module, params
示例4: example
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def example():
shape = (1, 64, 54, 54)
c_data = np.empty(shape).astype("float32")
c = relay.const(c_data)
weight = relay.var('weight', shape=(64, 64, 3, 3))
x = relay.var("x", relay.TensorType((1, 64, 56, 56), "float32"))
conv = relay.nn.conv2d(x, weight)
y = relay.add(c, c)
y = relay.multiply(y, relay.const(2, "float32"))
y = relay.add(conv, y)
z = relay.add(y, c)
z1 = relay.add(y, c)
z2 = relay.add(z, z1)
return relay.Function([x], z2)
###############################################################################
# Let us register layout alteration for a conv2d op so that we can apply the
# layout alteration pass on the example. How alter layout pass works is out
# the scope of this tutorial.
示例5: alter_conv2d
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def alter_conv2d(attrs, inputs, tinfos, out_type):
data, weight = inputs
new_attrs = dict(attrs)
new_attrs['data_layout'] = 'NCHW16c'
return relay.nn.conv2d(data, weight, **new_attrs)
###############################################################################
# Optimize the Program
# --------------------
# Now we would like to optimize the program. Relay features a host of
# optimizations. We will select some of them to apply on this example program.
#
# There are multiple ways to optimize a Relay program. Below we will provide
# examples for each of them.
#
# Manually Apply Optimization Passes
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Let's first create a relay Module which contains one or multiple Relay
# functions for optimization.
示例6: run_relay_graph
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def run_relay_graph(mod, params, shape_dict, target, ctx):
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod, target=target, params=params)
input_shape = shape_dict["input_1"]
dummy_data = np.random.uniform(size=input_shape, low=0, high=input_shape[1]).astype(
"int32"
)
m = graph_runtime.create(graph, lib, ctx)
m.set_input(0, dummy_data)
m.set_input(**params)
m.run()
tvm_output = m.get_output(0)
ftimer = m.module.time_evaluator("run", ctx, repeat=5, number=5)
prof_res = np.array(ftimer().results) * 1000
print(
"%-20s %-19s (%s)"
% ("Runtime:", "%.2f ms" % np.mean(prof_res), "%.2f ms" % np.std(prof_res))
)
return tvm_output
示例7: random_sparse_bert_params
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def random_sparse_bert_params(func, params, density, BS_R, BS_C):
def deepcopy(param_dic):
ret = {}
for k, v in param_dic.items():
ret[k] = tvm.nd.array(v.asnumpy())
return ret
new_params = deepcopy(params)
dense_weight_names = relay.analysis.sparse_dense._search_dense_op_weight(func)
for item in dense_weight_names:
name = str(item)
shape = new_params[name].shape
if shape[0] % BS_R == 0 and shape[1] % BS_C == 0:
new_w = random_bsr_matrix(shape[0], shape[1], BS_R, BS_C, density)
new_params[name] = tvm.nd.array(new_w)
return new_params
示例8: run
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def run(args):
onnx_model = onnx.load_model(run_onnx_util.onnx_model_file(args.test_dir, args.model_file))
ctx = tvm.gpu()
input_names, output_names = run_onnx_util.onnx_input_output_names(
os.path.join(args.test_dir, args.model_file))
test_data_dir = os.path.join(args.test_dir, 'test_data_set_0')
inputs, outputs = run_onnx_util.load_test_data(
test_data_dir, input_names, output_names)
inputs = dict(inputs)
graph_module = None
if args.frontend == 'nnvm':
graph_module = build_graph_nnvm(args, ctx, onnx_model, inputs, input_names)
elif args.frontend == 'relay':
graph_module = build_graph_relay(args, ctx, onnx_model, inputs, input_names)
else:
raise RuntimeError('Invalid frontend: {}'.format(args.frontend))
graph_module.run()
for i, (name, expected) in enumerate(outputs):
tvm_output = tvm.nd.empty(expected.shape, expected.dtype, ctx=ctx)
actual = graph_module.get_output(i, tvm_output).asnumpy()
np.testing.assert_allclose(expected, actual,
rtol=1e-3, atol=1e-4), name
print('%s: OK' % name)
print('ALL OK')
def compute():
graph_module.run()
cupy.cuda.device.Device().synchronize()
return run_onnx_util.run_benchmark(compute, args.iterations)
示例9: get_args
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def get_args(args=None):
parser = argparse.ArgumentParser(description='Run ONNX by TVM')
parser.add_argument('test_dir')
parser.add_argument('--frontend', type=str, default='relay')
parser.add_argument('--dump_frontend', action='store_true')
parser.add_argument('--target', type=str, default='cuda')
parser.add_argument('--debug', '-g', action='store_true')
parser.add_argument('--iterations', '-I', type=int, default=1)
parser.add_argument('--opt_level', '-O', type=int, default=3)
parser.add_argument('--autotvm_log', type=str)
parser.add_argument('--model_file', default=None)
return parser.parse_args(args=args)
示例10: get_operator
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def get_operator(data_shape, out_channel, kernel_size, strides, padding, dtype="float32"):
data = relay.var("data", shape=data_shape, dtype=dtype)
body = layers.conv2d(data=data, channels=out_channel, kernel_size=kernel_size, strides=strides, padding=padding, name="conv2d")
return relay.Function(relay.ir_pass.free_vars(body), body)
示例11: tune_and_evaluate
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.conv2d,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.context(str(target), 0)
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=1, repeat=number)
prof_res = np.array(ftimer().results) * 1e3
print("Time cost is: ", np.mean(prof_res))
示例12: get_operator
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def get_operator(data_shape, weight_shape, dtype="float32"):
data = relay.var("data", shape=data_shape, dtype=dtype)
weight = relay.var("weight", shape=weight_shape, dtype=dtype)
body = relay.nn.dense(data=data, weight=weight, name="dense")
return relay.Function(relay.ir_pass.free_vars(body), body)
示例13: tune_and_evaluate
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
print(tvm.autotvm.task.task.TASK_TABLE)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.dense,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.cpu(np.random.randint(0, 20))
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=number, repeat=1)
prof_res = np.array(ftimer().results) * 1e3
cost = np.mean(prof_res)
print("Time cost is: ", cost)
return cost
示例14: tune_and_evaluate
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def tune_and_evaluate(tuning_opt, number, tune=True):
op, params, data_shape = get_workload(batch_size, image_shape, out_channel, kernel_size, strides, padding)
tasks = autotvm.task.extract_from_program(op, target=target, params=params, ops=(relay.op.nn.conv2d,))
log_file = tuning_opt["log_filename"]
if tune:
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
if not os.path.exists(log_file):
raise RuntimeError("the log file {} doesn't exists".format(log_file))
with autotvm.apply_history_best(log_file) as f:
print(f.best_by_targetkey)
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(op, target=target, params=params)
ctx = tvm.cpu(np.random.randint(0, 20))
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input("data", data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=number, repeat=1)
prof_res = np.array(ftimer().results) * 1e3
cost = np.mean(prof_res)
print("Time cost is: ", cost)
return cost
示例15: get_network
# 需要导入模块: import tvm [as 别名]
# 或者: from tvm import relay [as 别名]
def get_network(name, batch_size):
"""Get the symbol definition and random weight of a network"""
input_shape = (batch_size, 3, 224, 224)
output_shape = (batch_size, 1000)
if "resnet" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.resnet.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif "vgg" in name:
n_layer = int(name.split('-')[1])
net, params = relay.testing.vgg.get_workload(num_layers=n_layer, batch_size=batch_size, dtype=dtype)
elif name == 'mobilenet':
net, params = relay.testing.mobilenet.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'squeezenet_v1.1':
net, params = relay.testing.squeezenet.get_workload(batch_size=batch_size, version='1.1', dtype=dtype)
elif name == 'inception_v3':
input_shape = (1, 3, 299, 299)
net, params = relay.testing.inception_v3.get_workload(batch_size=batch_size, dtype=dtype)
elif name == 'mxnet':
# an example for mxnet model
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
net, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype)
net = relay.Function(net.params, relay.nn.softmax(net.body), None, net.type_params, net.attrs)
else:
raise ValueError("Unsupported network: " + name)
return net, params, input_shape, output_shape
# Replace "llvm" with the correct target of your cpu.
# For example, for AWS EC2 c5 instance with Intel Xeon
# Platinum 8000 series, the target should be "llvm -mcpu=skylake-avx512".
# For AWS EC2 c4 instance with Intel Xeon E5-2666 v3, it should be
# "llvm -mcpu=core-avx2".