本文整理汇总了Python中tushare.get_today_all方法的典型用法代码示例。如果您正苦于以下问题:Python tushare.get_today_all方法的具体用法?Python tushare.get_today_all怎么用?Python tushare.get_today_all使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tushare
的用法示例。
在下文中一共展示了tushare.get_today_all方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _getStockCodesFromTuShare
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def _getStockCodesFromTuShare(self):
self._info.print("开始从TuShare获取股票代码表...")
try:
df = ts.get_today_all() # it's slow because TuShare will get one page by one page
except Exception as ex:
self._info.print("从TuShare获取股票代码表异常: {}".format(ex), DyLogData.error)
return None
if df is None or df.empty:
self._info.print("从TuShare获取股票代码表为空", DyLogData.error)
return None
codes = {}
data = df[['code', 'name']].values.tolist()
for code, name in data:
if code[0] == '6':
codes[code + '.SH'] = name
else:
codes[code + '.SZ'] = name
self._info.print("从TuShare获取股票代码表成功")
return codes
示例2: download_realtime_stock_price
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def download_realtime_stock_price():
"""
# 下载股票的实时行情
:return:
"""
try:
engine = db.get_w_engine()
df_price = ts.get_today_all()
stock_time = GetNowTime()
if stock_time[11:] > "15:00:00":
stock_time = stock_time[:11] + "15:00:00"
df_price['date'] = stock_time
# df_price.to_sql(STOCK_REALTIME_TABLE, engine, if_exists='append', index=False)
to_sql(STOCK_REALTIME_TABLE, engine, df_price, type='replace')
except Exception as e:
print(e)
#######################
## private methods ##
#######################
示例3: _getStockCodesFromTuShare
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def _getStockCodesFromTuShare(self):
try:
df = ts.get_today_all() # it's slow because TuShare will get one page by one page
except Exception as ex:
return None
if df is None or df.empty:
return None
codes = {}
data = df[['code', 'name']].values.tolist()
for code, name in data:
if code[0] == '6':
codes[code + '.SH'] = name
else:
codes[code + '.SZ'] = name
return codes
示例4: QA_fetch_get_stock_realtime
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def QA_fetch_get_stock_realtime():
data = ts.get_today_all()
data_json = QA_util_to_json_from_pandas(data)
return data_json
示例5: stat_today_all
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def stat_today_all(tmp_datetime):
datetime_str = (tmp_datetime).strftime("%Y-%m-%d")
datetime_int = (tmp_datetime).strftime("%Y%m%d")
print("datetime_str:", datetime_str)
print("datetime_int:", datetime_int)
data = ts.get_today_all()
# 处理重复数据,保存最新一条数据。最后一步处理,否则concat有问题。
if not data is None and len(data) > 0:
# 插入数据库。
# del data["reason"]
data["date"] = datetime_int # 修改时间成为int类型。
data = data.drop_duplicates(subset="code", keep="last")
data.head(n=1)
common.insert_db(data, "ts_today_all", False, "`date`,`code`")
else:
print("no data .")
time.sleep(5) # 停止5秒
data = ts.get_index()
# 处理重复数据,保存最新一条数据。最后一步处理,否则concat有问题。
if not data is None and len(data) > 0:
# 插入数据库。
# del data["reason"]
data["date"] = datetime_int # 修改时间成为int类型。
data = data.drop_duplicates(subset="code", keep="last")
data.head(n=1)
common.insert_db(data, "ts_index_all", False, "`date`,`code`")
else:
print("no data .")
print(datetime_str)
# main函数入口
示例6: filter_by_roe
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def filter_by_roe(min): # 筛选出最近5年ROE都高于min的公司
path = os.path.join(current_folder, '3年平均利润及其他财务指标%s.csv' % today)
if not os.path.exists(path): # 没有就生成3年平均利润列表
calcu_all_stocks_3year_roe_and_average_profit(
calcu_average_profit_end_year)
gplb = pd.read_csv(path, index_col=0, encoding='utf-8')
gplb = gplb[gplb['当年roe'] > min]
gplb = gplb[gplb['上1年roe'] > min]
gplb = gplb[gplb['上2年roe'] > min]
gplb = gplb[gplb['上3年roe'] > min]
gplb = gplb[gplb['上4年roe'] > min]
# 获取当前股票价格
price_path = os.path.join(current_folder, today + '股票价格.csv')
if not os.path.exists(price_path):
ts.get_today_all().set_index('code').to_csv(
price_path, encoding="utf-8")
current_price = pd.read_csv(price_path, encoding="utf-8", index_col=0)
current_price = current_price[['trade']]
current_price.columns = ['价格']
gplb = gplb[[
'名字', '行业', '地区', '流通股本', '总股本', '总资产(万)', '流动资产', '固定资产', '每股净资',
'市净率', '上市日期', '平均利润', '当年roe', '上1年roe', '上2年roe', '上3年roe', '上4年roe'
]]
data = pd.merge(gplb, current_price, left_index=True, right_index=True)
# 因为这里的平均利润单位是万元,而总股本单位是亿,价格单位是元
data['平均市盈率'] = data['总股本'] * data['价格'] * 10000 / data['平均利润']
data['平均市盈率'] = data['平均市盈率'].round(1)
data['市净率'] = data['市净率'].round(1)
high_roe_file = os.path.join(current_folder,
today + f'-最近5年ROE都高于{min}%的公司.xlsx')
data.to_excel(high_roe_file, encoding='utf-8')
示例7: k_today
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def k_today():
return ts.get_today_all()
示例8: getLiveChinaStockPrice
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def getLiveChinaStockPrice(stockCode):
try:
exchange = "sh" if (int(stockCode) // 100000 == 6) else "sz"
dataUrl = "http://hq.sinajs.cn/list=" + exchange + stockCode
stdout = urllib2.urlopen(dataUrl)
stdoutInfo = stdout.read().decode('gb2312').encode('utf-8')
# 正则表达式说明
# 搜索 “ ”双引号内的字符串,包含换行符,将匹配的字符串分为三组:用()表示
# group(2):取第二组数据
tempData = re.search('''(")(.+)(")''', stdoutInfo).group(2)
stockInfo = tempData.split(",")
#bb[0]:股票名 bb[1]:今日开盘价 bb[2]:昨日收盘价 bb[3]:当前价格 bb[4]:今日最高价 bb[5]:今日最低价
#bb[6]:买一报价 bb[7]:卖一报价 bb[8]:成交股票数/100 bb[9]:成交金额/w bb[10]:买一申请股数 bb[11]:买一报价
#bb[12]:买二股数 bb[13]:买二报价 bb[14]:买三股数 bb[15]:买三报价 bb[16]:买四申请股数 bb[17]:买四报价
#bb[18]:买五股数 bb[19]:买五报价 bb[20]:卖一股数 bb[21]:卖一报价 bb[22]:卖二申请股数 bb[23]:卖二报价
#bb[24]:卖三股数 bb[25]:卖三报价 bb[26]:卖四股数 bb[27]:卖四报价 bb[28]:卖五股数 bb[29]:卖五报价
#bb[30]:日期 bb[31]:时间 bb[8]:不知道
return st.Stock(stockInfo)
except Exception as e:
print(">>>>>> Exception: " + str(e))
finally:
None
# 获取A股所有股票的实时股价
# 通过 ts.get_today_all 获取
示例9: get_real_price_dataframe
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def get_real_price_dataframe():
df = ts.get_today_all()
return df
示例10: get_stock_price
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def get_stock_price(code, include_realtime_price):
"""
获取个股股价
:param code: 股票代码
:param include_realtime_price: 是否含实时股价
:return:
"""
# 获取历史股价
df = ts.get_hist_data(code)
df = df[['close']]
df['date'] = df.index
if include_realtime_price:
df_today = ts.get_today_all()
df_code = df_today[df_today['code']==code]
df_code = df_code[['trade']]
df_code['date'] = GetNowDate()
df_code.rename(columns={'trade': 'close'}, inplace=True)
df = pd.concat([df, df_code], ignore_index=True)
df.sort(columns='date', inplace=True)
df = df.drop_duplicates(['date'])
df.index = range(len(df))
print '\n'
# print df.head()
print df.tail()
return df
示例11: plot_days
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def plot_days():
if request.method == 'GET' :
today = ts.get_today_all()
code_info = ts.get_industry_classified()
today['code'] = today['code'].astype(unicode)
one_day = gd.get_data_real_time(code_info, today)
body = heatmap.get_heatmap('Today', one_day)
return render_template('heatmap.html', body=body)
示例12: filter_stock_by_average_pe
# 需要导入模块: import tushare [as 别名]
# 或者: from tushare import get_today_all [as 别名]
def filter_stock_by_average_pe(min, max):
path = os.path.join(current_folder, '3年平均利润及其他财务指标%s.csv' % today)
if not os.path.exists(path): # 没有就生成3年平均利润列表
calcu_all_stocks_3year_roe_and_average_profit(
calcu_average_profit_end_year)
gplb = pd.read_csv(path, index_col=0, encoding='utf-8')
# 获取当前股票价格
price_path = os.path.join(current_folder, today + '股票价格.csv')
if not os.path.exists(price_path):
ts.get_today_all().set_index('code').to_csv(
price_path, encoding="utf-8")
current_price = pd.read_csv(price_path, encoding="utf-8", index_col=0)
current_price = current_price[['trade']]
current_price.columns = ['价格']
gplb = gplb[[
'名字', '行业', '地区', '流通股本', '总股本', '总资产(万)', '流动资产', '固定资产', '每股净资',
'市净率', '上市日期', '平均利润'
]]
data = pd.merge(gplb, current_price, left_index=True, right_index=True)
# 因为这里的平均利润单位是万元,而总股本单位是亿,价格单位是元
data['平均市盈率'] = data['总股本'] * data['价格'] * 10000 / data['平均利润']
print('\n%s:' % today)
print()
print('%d个公司' % data.shape[0])
print('3年市盈率中位数%.1f' % round(data['平均市盈率'].median(), 1))
print('市净率中位数%.1f' % round(data['市净率'].median(), 1))
data = data[data['平均市盈率'] < max]
data = data[data['平均市盈率'] > min]
data['平均市盈率'] = data['平均市盈率'].round(1)
data['平均利润'] = data['平均利润'].round()
data['市净率'] = data['市净率'].round(1)
data['固定资产'] = data['固定资产'].round()
data['流动资产'] = data['流动资产'].round()
data['总股本'] = data['总股本'].round()
data['流通股本'] = data['流通股本'].round()
average_pe_file = os.path.join(
current_folder, today + '-3年平均市盈率在%s和%s之间的公司.xlsx' % (min, max))
data.to_excel(average_pe_file, encoding='utf-8')