当前位置: 首页>>代码示例>>Python>>正文


Python transforms.Normalize方法代码示例

本文整理汇总了Python中transforms.Normalize方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.Normalize方法的具体用法?Python transforms.Normalize怎么用?Python transforms.Normalize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在transforms的用法示例。


在下文中一共展示了transforms.Normalize方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: read_image

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Normalize [as 别名]
def read_image(img_path):
    """Keep reading image until succeed.
    This can avoid IOError incurred by heavy IO process."""
    got_img = False
    if not osp.exists(img_path):
        raise IOError("{} does not exist".format(img_path))
    while not got_img:
        try:
            img = Image.open(img_path).convert('RGB')
            got_img = True
        except IOError:
            print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
            pass

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    img = transform_test(img)
    return img 
开发者ID:SamvitJ,项目名称:ReXCam,代码行数:23,代码来源:train_img_model_xent.py

示例2: get_transform

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Normalize [as 别名]
def get_transform(mode,base_size):
    #base_size = 520
    #crop_size = 480
    crop_size=int(480*base_size/520)

    min_size = int((0.5 if mode=='train' else 1.0) * base_size)
    max_size = int((2.0 if mode=='train' else 1.0) * base_size)
    transforms = []
    transforms.append(T.RandomResize(min_size, max_size))
    if mode=='train':
        transforms.append(T.RandomHorizontalFlip(0.5))
        transforms.append(T.RandomCrop(crop_size))
    transforms.append(T.ToTensor())
    transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225]))

    return T.Compose(transforms) 
开发者ID:yechengxi,项目名称:deconvolution,代码行数:19,代码来源:train.py

示例3: __init__

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Normalize [as 别名]
def __init__(self, batch_size, use_gpu, num_workers):
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])

        pin_memory = True if use_gpu else False

        trainset = torchvision.datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform)
        
        trainloader = torch.utils.data.DataLoader(
            trainset, batch_size=batch_size, shuffle=True,
            num_workers=num_workers, pin_memory=pin_memory,
        )
        
        testset = torchvision.datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform)
        
        testloader = torch.utils.data.DataLoader(
            testset, batch_size=batch_size, shuffle=False,
            num_workers=num_workers, pin_memory=pin_memory,
        )

        self.trainloader = trainloader
        self.testloader = testloader
        self.num_classes = 10 
开发者ID:KaiyangZhou,项目名称:pytorch-center-loss,代码行数:27,代码来源:datasets.py


注:本文中的transforms.Normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。