当前位置: 首页>>代码示例>>Python>>正文


Python transforms.Compose方法代码示例

本文整理汇总了Python中transforms.Compose方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.Compose方法的具体用法?Python transforms.Compose怎么用?Python transforms.Compose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在transforms的用法示例。


在下文中一共展示了transforms.Compose方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: SSDTransform

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Compose [as 别名]
def SSDTransform(size, color_jitter=True, scale=(0.1, 1), expand=(1, 4), min_area_frac=0.25):
    transforms = []
    if color_jitter:
        transforms.append(
            InputTransform(
                ColorJitter(
                    brightness=0.1, contrast=0.5,
                    saturation=0.5, hue=0.05,
                )
            )
        )
    transforms += [
        RandomApply([
            RandomExpand(expand),
        ]),
        RandomChoice([
            UseOriginal(),
            RandomSampleCrop(),
            RandomResizedCrop(size, scale=scale, ratio=(1/2, 2/1), min_area_frac=min_area_frac),
        ]),
        RandomHorizontalFlip(),
        Resize(size)
    ]
    return Compose(transforms) 
开发者ID:qixuxiang,项目名称:Pytorch_Lightweight_Network,代码行数:26,代码来源:__init__.py

示例2: read_image

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Compose [as 别名]
def read_image(img_path):
    """Keep reading image until succeed.
    This can avoid IOError incurred by heavy IO process."""
    got_img = False
    if not osp.exists(img_path):
        raise IOError("{} does not exist".format(img_path))
    while not got_img:
        try:
            img = Image.open(img_path).convert('RGB')
            got_img = True
        except IOError:
            print("IOError incurred when reading '{}'. Will redo. Don't worry. Just chill.".format(img_path))
            pass

    transform_test = T.Compose([
        T.Resize((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    img = transform_test(img)
    return img 
开发者ID:SamvitJ,项目名称:ReXCam,代码行数:23,代码来源:train_img_model_xent.py

示例3: get_coco

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Compose [as 别名]
def get_coco(root, image_set, transforms):
    PATHS = {
        "train": ("train2017", os.path.join("annotations", "instances_train2017.json")),
        "val": ("val2017", os.path.join("annotations", "instances_val2017.json")),
        # "train": ("val2017", os.path.join("annotations", "instances_val2017.json"))
    }
    CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4,
                1, 64, 20, 63, 7, 72]

    transforms = Compose([
        FilterAndRemapCocoCategories(CAT_LIST, remap=True),
        ConvertCocoPolysToMask(),
        transforms
    ])

    img_folder, ann_file = PATHS[image_set]
    img_folder = os.path.join(root, img_folder)
    ann_file = os.path.join(root, ann_file)

    dataset = torchvision.datasets.CocoDetection(img_folder, ann_file, transforms=transforms)

    if image_set == "train":
        dataset = _coco_remove_images_without_annotations(dataset, CAT_LIST)

    return dataset 
开发者ID:yechengxi,项目名称:deconvolution,代码行数:27,代码来源:coco_utils.py

示例4: get_transform

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Compose [as 别名]
def get_transform(mode,base_size):
    #base_size = 520
    #crop_size = 480
    crop_size=int(480*base_size/520)

    min_size = int((0.5 if mode=='train' else 1.0) * base_size)
    max_size = int((2.0 if mode=='train' else 1.0) * base_size)
    transforms = []
    transforms.append(T.RandomResize(min_size, max_size))
    if mode=='train':
        transforms.append(T.RandomHorizontalFlip(0.5))
        transforms.append(T.RandomCrop(crop_size))
    transforms.append(T.ToTensor())
    transforms.append(T.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225]))

    return T.Compose(transforms) 
开发者ID:yechengxi,项目名称:deconvolution,代码行数:19,代码来源:train.py

示例5: __init__

# 需要导入模块: import transforms [as 别名]
# 或者: from transforms import Compose [as 别名]
def __init__(self, batch_size, use_gpu, num_workers):
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])

        pin_memory = True if use_gpu else False

        trainset = torchvision.datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform)
        
        trainloader = torch.utils.data.DataLoader(
            trainset, batch_size=batch_size, shuffle=True,
            num_workers=num_workers, pin_memory=pin_memory,
        )
        
        testset = torchvision.datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform)
        
        testloader = torch.utils.data.DataLoader(
            testset, batch_size=batch_size, shuffle=False,
            num_workers=num_workers, pin_memory=pin_memory,
        )

        self.trainloader = trainloader
        self.testloader = testloader
        self.num_classes = 10 
开发者ID:KaiyangZhou,项目名称:pytorch-center-loss,代码行数:27,代码来源:datasets.py


注:本文中的transforms.Compose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。