本文整理汇总了Python中transformers.GPT2Config方法的典型用法代码示例。如果您正苦于以下问题:Python transformers.GPT2Config方法的具体用法?Python transformers.GPT2Config怎么用?Python transformers.GPT2Config使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类transformers
的用法示例。
在下文中一共展示了transformers.GPT2Config方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GPT2ConfigCPU
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def GPT2ConfigCPU(
vocab_size: int = 5000, bos_token_id: int = 0, eos_token_id: int = 0, **kwargs
):
"""
Returns a GPT-2 config more suitable for training on a regular consumer CPU.
"""
return GPT2Config(
vocab_size=vocab_size,
n_positions=64,
n_ctx=64,
n_embd=128,
n_layer=4,
n_head=4,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
示例2: build_gpt2_config
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def build_gpt2_config(
vocab_size: int = 10000,
bos_token_id: int = 0,
eos_token_id: int = 0,
max_length: int = 1024,
dropout: float = 0.0,
**kwargs
):
"""
Builds a custom GPT-2 config based on a given Transformers config,
with a few more user-friendly aliases.
"""
return GPT2Config(
vocab_size=vocab_size,
n_positions=max_length,
n_ctx=max_length,
resid_pdrop=dropout,
embd_pdrop=dropout,
attn_pdrop=dropout,
summary_first_dropout=dropout,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
示例3: test_TFGPT2
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def test_TFGPT2(self):
if enable_full_transformer_test:
from transformers import GPT2Config, TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel
model_list = [TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel]
else:
from transformers import GPT2Config, TFGPT2Model
model_list = [TFGPT2Model]
# pretrained_weights = 'gpt2'
tokenizer_file = 'gpt2_gpt2.pickle'
tokenizer = self._get_tokenzier(tokenizer_file)
text, inputs, inputs_onnx = self._prepare_inputs(tokenizer)
config = GPT2Config()
for model_instance_ in model_list:
keras.backend.clear_session()
model = model_instance_(config)
model._set_inputs(inputs)
predictions_original = model(inputs)
predictions = [predictions_original[0]] + list(v_.numpy() for v_ in predictions_original[1])
onnx_model = keras2onnx.convert_keras(model, model.name)
self.assertTrue(
run_onnx_runtime(onnx_model.graph.name, onnx_model, inputs_onnx, predictions, self.model_files, rtol=1.e-2,
atol=1.e-4))
示例4: __init__
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def __init__(self, args, task):
super().__init__(task.target_dictionary)
try:
# Prepend the transformers submodule to the path, so that
# it's prioritized over other installations. This allows
# making local changes in the submodule.
sys.path.insert(
0, os.path.join(os.path.dirname(__file__), 'transformers', 'src')
)
from transformers import GPT2Config, GPT2LMHeadModel
except ImportError:
raise ImportError(
'\n\nPlease install huggingface/transformers with:'
'\n\n pip install transformers'
'\n\nOr to make local edits, install the submodule:'
'\n\n git submodule update --init '
'fairseq/models/huggingface/transformers'
)
config = GPT2Config(
vocab_size=len(task.target_dictionary),
n_positions=args.max_target_positions + 1,
n_ctx=args.max_target_positions,
n_embd=args.embed_dim,
n_layer=args.num_layers,
n_head=args.num_attention_heads,
resid_pdrop=args.dropout,
embd_pdrop=args.dropout,
attn_pdrop=args.attention_dropout,
layer_norm_epsilon=1e-6,
)
self.model = GPT2LMHeadModel(config)
# set zero embedding for padding symbol
self.pad_idx = task.target_dictionary.pad()
self.model.transformer.wte.weight.data[self.pad_idx].zero_()
self.model.transformer.wpe.weight.data[0].zero_()
示例5: setUp
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def setUp(self):
self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
示例6: test_3layer_gpt2
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def test_3layer_gpt2(self):
from transformers import GPT2Config, TFGPT2Model, BertTokenizer
keras2onnx.proto.keras.backend.set_learning_phase(0)
config = GPT2Config(n_layer=3)
model = TFGPT2Model(config)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
text, inputs, inputs_onnx = self._prepare_inputs(tokenizer)
inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='tf')
predictions = model.predict(inputs)
onnx_model = keras2onnx.convert_keras(model, model.name)
self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, inputs_onnx, predictions, self.model_files))
示例7: prepare_config_and_inputs
# 需要导入模块: import transformers [as 别名]
# 或者: from transformers import GPT2Config [as 别名]
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)