当前位置: 首页>>代码示例>>Python>>正文


Python train.Train方法代码示例

本文整理汇总了Python中train.Train方法的典型用法代码示例。如果您正苦于以下问题:Python train.Train方法的具体用法?Python train.Train怎么用?Python train.Train使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在train的用法示例。


在下文中一共展示了train.Train方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import train [as 别名]
# 或者: from train import Train [as 别名]
def main():
    # Parse the JSON arguments
    config_args = parse_args()

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(
        config_args.experiment_dir)

    model = MobileNetV2(config_args)

    if config_args.cuda:
        model.cuda()
        cudnn.enabled = True
        cudnn.benchmark = True

    print("Loading Data...")
    data = CIFAR10Data(config_args)
    print("Data loaded successfully\n")

    trainer = Train(model, data.trainloader, data.testloader, config_args)

    if config_args.to_train:
        try:
            print("Training...")
            trainer.train()
            print("Training Finished\n")
        except KeyboardInterrupt:
            pass

    if config_args.to_test:
        print("Testing...")
        trainer.test(data.testloader)
        print("Testing Finished\n") 
开发者ID:MG2033,项目名称:MobileNet-V2,代码行数:35,代码来源:main.py

示例2: main

# 需要导入模块: import train [as 别名]
# 或者: from train import Train [as 别名]
def main():
    # Parse the JSON arguments
    try:
        config_args = parse_args()
    except:
        print("Add a config file using \'--config file_name.json\'")
        exit(1)

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)

    # Reset the default Tensorflow graph
    tf.reset_default_graph()

    # Tensorflow specific configuration
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Data loading
    data = DataLoader(config_args.batch_size, config_args.shuffle)
    print("Loading Data...")
    config_args.img_height, config_args.img_width, config_args.num_channels, \
    config_args.train_data_size, config_args.test_data_size = data.load_data()
    print("Data loaded\n\n")

    # Model creation
    print("Building the model...")
    model = MobileNet(config_args)
    print("Model is built successfully\n\n")

    # Summarizer creation
    summarizer = Summarizer(sess, config_args.summary_dir)
    # Train class
    trainer = Train(sess, model, data, summarizer)

    if config_args.to_train:
        try:
            print("Training...")
            trainer.train()
            print("Training Finished\n\n")
        except KeyboardInterrupt:
            trainer.save_model()

    if config_args.to_test:
        print("Final test!")
        trainer.test('val')
        print("Testing Finished\n\n") 
开发者ID:MG2033,项目名称:MobileNet,代码行数:50,代码来源:main.py

示例3: main

# 需要导入模块: import train [as 别名]
# 或者: from train import Train [as 别名]
def main(args):
    config = load_config(args)
    global_eval_config = config["eval_params"]
    models, model_names = config_modelloader(config, load_pretrain = True)

    robust_errs = []
    errs = []

    for model, model_id, model_config in zip(models, model_names, config["models"]):
        # make a copy of global training config, and update per-model config
        eval_config = copy.deepcopy(global_eval_config)
        if "eval_params" in model_config:
            eval_config.update(model_config["eval_params"])

        model = BoundSequential.convert(model, eval_config["method_params"]["bound_opts"]) 
        model = model.cuda()
        # read training parameters from config file
        method = eval_config["method"]
        verbose = eval_config["verbose"]
        eps = eval_config["epsilon"]
        # parameters specific to a training method
        method_param = eval_config["method_params"]
        norm = float(eval_config["norm"])
        train_data, test_data = config_dataloader(config, **eval_config["loader_params"])

        model_name = get_path(config, model_id, "model", load = False)
        print(model_name)
        model_log = get_path(config, model_id, "eval_log")
        logger = Logger(open(model_log, "w"))
        logger.log("evaluation configurations:", eval_config)
            
        logger.log("Evaluating...")
        with torch.no_grad():
            # evaluate
            robust_err, err = Train(model, 0, test_data, EpsilonScheduler("linear", 0, 0, eps, eps, 1), eps, norm, logger, verbose, False, None, method, **method_param)
        robust_errs.append(robust_err)
        errs.append(err)

    print('model robust errors (for robustly trained models, not valid for naturally trained models):')
    print(robust_errs)
    robust_errs = np.array(robust_errs)
    print('min: {:.4f}, max: {:.4f}, median: {:.4f}, mean: {:.4f}'.format(np.min(robust_errs), np.max(robust_errs), np.median(robust_errs), np.mean(robust_errs)))
    print('clean errors for models with min, max and median robust errors')
    i_min = np.argmin(robust_errs)
    i_max = np.argmax(robust_errs)
    i_median = np.argsort(robust_errs)[len(robust_errs) // 2]
    print('for min: {:.4f}, for max: {:.4f}, for median: {:.4f}'.format(errs[i_min], errs[i_max], errs[i_median]))
    print('model clean errors:')
    print(errs)
    print('min: {:.4f}, max: {:.4f}, median: {:.4f}, mean: {:.4f}'.format(np.min(errs), np.max(errs), np.median(errs), np.mean(errs))) 
开发者ID:huanzhang12,项目名称:CROWN-IBP,代码行数:52,代码来源:eval.py

示例4: main

# 需要导入模块: import train [as 别名]
# 或者: from train import Train [as 别名]
def main():
    # Parse the JSON arguments
    config_args = parse_args()

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)

    # Reset the default Tensorflow graph
    tf.reset_default_graph()

    # Tensorflow specific configuration
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Data loading
    # The batch size is equal to 1 when testing to simulate the real experiment.
    data_batch_size = config_args.batch_size if config_args.train_or_test == "train" else 1
    data = DataLoader(data_batch_size, config_args.shuffle)
    print("Loading Data...")
    config_args.img_height, config_args.img_width, config_args.num_channels, \
    config_args.train_data_size, config_args.test_data_size = data.load_data()
    print("Data loaded\n\n")

    # Model creation
    print("Building the model...")
    model = ShuffleNet(config_args)
    print("Model is built successfully\n\n")

    # Parameters visualization
    show_parameters()

    # Summarizer creation
    summarizer = Summarizer(sess, config_args.summary_dir)
    # Train class
    trainer = Train(sess, model, data, summarizer)

    if config_args.train_or_test == 'train':
        try:
            # print("FLOPs for batch size = " + str(config_args.batch_size) + "\n")
            # calculate_flops()
            print("Training...")
            trainer.train()
            print("Training Finished\n\n")
        except KeyboardInterrupt:
            trainer.save_model()

    elif config_args.train_or_test == 'test':
        # print("FLOPs for single inference \n")
        # calculate_flops()
        # This can be 'val' or 'test' or even 'train' according to the needs.
        print("Testing...")
        trainer.test('val')
        print("Testing Finished\n\n")

    else:
        raise ValueError("Train or Test options only are allowed") 
开发者ID:MG2033,项目名称:ShuffleNet,代码行数:59,代码来源:main.py


注:本文中的train.Train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。