当前位置: 首页>>代码示例>>Python>>正文


Python train.Graph方法代码示例

本文整理汇总了Python中train.Graph方法的典型用法代码示例。如果您正苦于以下问题:Python train.Graph方法的具体用法?Python train.Graph怎么用?Python train.Graph使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在train的用法示例。


在下文中一共展示了train.Graph方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: synthesize

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def synthesize():
    if not os.path.exists(hp.sampledir): os.mkdir(hp.sampledir)

    # Load graph
    g = Graph(mode="synthesize"); print("Graph loaded")

    # Load data
    texts = load_data(mode="synthesize")

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")

        # Feed Forward
        ## mel
        y_hat = np.zeros((texts.shape[0], 200, hp.n_mels*hp.r), np.float32)  # hp.n_mels*hp.r
        for j in tqdm.tqdm(range(200)):
            _y_hat = sess.run(g.y_hat, {g.x: texts, g.y: y_hat})
            y_hat[:, j, :] = _y_hat[:, j, :]
        ## mag
        mags = sess.run(g.z_hat, {g.y_hat: y_hat})
        for i, mag in enumerate(mags):
            print("File {}.wav is being generated ...".format(i+1))
            audio = spectrogram2wav(mag)
            write(os.path.join(hp.sampledir, '{}.wav'.format(i+1)), hp.sr, audio) 
开发者ID:Kyubyong,项目名称:tacotron,代码行数:27,代码来源:synthesize.py

示例2: test

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def test():
    x, y = load_data(type="test")
    
    g = Graph(is_training=False)
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")
            
            # Get model name
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
            
	    if not os.path.exists('results'): os.mkdir('results')
            fout = 'results/{}.txt'.format(mname)
            import copy
            _preds = copy.copy(x)
            while 1:
                istarget, probs, preds = sess.run([g.istarget, g.probs, g.preds], {g.x:_preds, g.y: y})
                probs = probs.astype(np.float32)
                preds = preds.astype(np.float32)
                
                probs *= istarget #(N, 9, 9)
                preds *= istarget #(N, 9, 9)

                probs = np.reshape(probs, (-1, 9*9)) #(N, 9*9)
                preds = np.reshape(preds, (-1, 9*9))#(N, 9*9)
                
                _preds = np.reshape(_preds, (-1, 9*9))
                maxprob_ids = np.argmax(probs, axis=1) # (N, ) <- blanks of the most probable prediction
                maxprobs = np.max(probs, axis=1, keepdims=False)
                for j, (maxprob_id, maxprob) in enumerate(zip(maxprob_ids, maxprobs)):
                    if maxprob != 0:
                        _preds[j, maxprob_id] = preds[j, maxprob_id]
                _preds = np.reshape(_preds, (-1, 9, 9))
                _preds = np.where(x==0, _preds, y) # # Fill in the non-blanks with correct numbers

                if np.count_nonzero(_preds) == _preds.size: break

            write_to_file(x.astype(np.int32), y, _preds.astype(np.int32), fout) 
开发者ID:Kyubyong,项目名称:sudoku,代码行数:43,代码来源:test.py

示例3: test

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def test():
    # Load data: two samples
    files, speaker_ids = load_data(mode="test")
    speaker_ids = speaker_ids[::-1] # swap

    # Parse
    x = np.zeros((2, 63488, 1), np.int32)
    for i, f in enumerate(files):
        f = np.load(f)
        length = min(63488, len(f))
        x[i, :length, :] = f[:length]

    # Graph
    g = Graph("test"); print("Test Graph loaded")
    with tf.Session() as sess:
        saver = tf.train.Saver()

        # Restore saved variables
        ckpt = tf.train.latest_checkpoint(hp.logdir)
        if ckpt is not None: saver.restore(sess, ckpt)

        # Feed Forward
        y_hat = np.zeros((2, 63488, 1), np.int32)
        for j in tqdm(range(63488)):
            _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat, g.speaker_ids: speaker_ids})
            _y_hat = np.expand_dims(_y_hat, -1)
            y_hat[:, j, :] = _y_hat[:, j, :]

        for i, y in tqdm(enumerate(y_hat)):
            audio = mu_law_decode(y)
            write(os.path.join(hp.sampledir, '{}.wav'.format(i + 1)), hp.sr, audio) 
开发者ID:Kyubyong,项目名称:vq-vae,代码行数:33,代码来源:test.py

示例4: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval(): 
    # Load graph
    g = Graph(is_training=False); print("Graph loaded")
    
    # Load data
    x, y = load_eval_data()
    char2idx, idx2char = load_vocab()
            
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session() as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")
            # Get model name
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]
            
            # Speech to Text
            if not os.path.exists('samples'): os.mkdir('samples') 
            with codecs.open('samples/{}.txt'.format(mname), 'w', 'utf-8') as fout:
                preds = np.zeros((hp.batch_size, hp.max_len), np.int32)
                for j in range(hp.max_len):
                    _preds = sess.run(g.preds, {g.x: x, g.y: preds})
                    preds[:, j] = _preds[:, j]
                
                # Write to file
                for i, (expected, got) in enumerate(zip(y, preds)): # ground truth vs. prediction
                    fout.write("Expected: {}\n".format(expected.split("S")[0]))
                    fout.write("Got     : {}\n\n".format(("".join(idx2char[idx] for idx in np.fromstring(got, np.int32))).split("S")[0]))
                    fout.flush() 
开发者ID:Kyubyong,项目名称:tacotron_asr,代码行数:32,代码来源:eval.py

示例5: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval(): 
    # Load graph
    g = Graph(mode="eval"); print("Evaluation Graph loaded")

    # Load data
    fpaths, text_lengths, texts = load_data(mode="eval")

    # Parse
    text = np.fromstring(texts[0], np.int32) # (None,)
    fname, mel, mag = load_spectrograms(fpaths[0])

    x = np.expand_dims(text, 0) # (1, None)
    y = np.expand_dims(mel, 0) # (1, None, n_mels*r)
    z = np.expand_dims(mag, 0) # (1, None, n_mfccs)

    saver = tf.train.Saver()
    with tf.Session() as sess:
        saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!")

        writer = tf.summary.FileWriter(hp.logdir, sess.graph)

        # Feed Forward
        ## mel
        y_hat = np.zeros((1, y.shape[1], y.shape[2]), np.float32)  # hp.n_mels*hp.r
        for j in range(y.shape[1]):
            _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat})
            y_hat[:, j, :] = _y_hat[:, j, :]

        ## mag
        merged, gs = sess.run([g.merged, g.global_step], {g.x:x, g.y:y, g.y_hat: y_hat, g.z: z})
        writer.add_summary(merged, global_step=gs)
        writer.close() 
开发者ID:Kyubyong,项目名称:tacotron,代码行数:34,代码来源:eval.py

示例6: synthesize

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def synthesize():
    # Load data
    L = load_data("synthesize")

    # Load graph
    g = Graph(mode="synthesize"); print("Graph loaded")

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        # Restore parameters
        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Text2Mel')
        saver1 = tf.train.Saver(var_list=var_list)
        saver1.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-1"))
        print("Text2Mel Restored!")

        var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'SSRN') + \
                   tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'gs')
        saver2 = tf.train.Saver(var_list=var_list)
        saver2.restore(sess, tf.train.latest_checkpoint(hp.logdir + "-2"))
        print("SSRN Restored!")

        # Feed Forward
        ## mel
        Y = np.zeros((len(L), hp.max_T, hp.n_mels), np.float32)
        prev_max_attentions = np.zeros((len(L),), np.int32)
        for j in tqdm(range(hp.max_T)):
            _gs, _Y, _max_attentions, _alignments = \
                sess.run([g.global_step, g.Y, g.max_attentions, g.alignments],
                         {g.L: L,
                          g.mels: Y,
                          g.prev_max_attentions: prev_max_attentions})
            Y[:, j, :] = _Y[:, j, :]
            prev_max_attentions = _max_attentions[:, j]

        # Get magnitude
        Z = sess.run(g.Z, {g.Y: Y})

        # Generate wav files
        if not os.path.exists(hp.sampledir): os.makedirs(hp.sampledir)
        for i, mag in enumerate(Z):
            print("Working on file", i+1)
            wav = spectrogram2wav(mag)
            write(hp.sampledir + "/{}.wav".format(i+1), hp.sr, wav) 
开发者ID:Kyubyong,项目名称:dc_tts,代码行数:46,代码来源:synthesize.py

示例7: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval(): 
    # Load graph
    g = Graph(is_training=False)
    print("Graph loaded")
    
    # Load data
    X, Sources, Targets = load_test_data()
    de2idx, idx2de = load_de_vocab()
    en2idx, idx2en = load_en_vocab()
     
#     X, Sources, Targets = X[:33], Sources[:33], Targets[:33]
     
    # Start session         
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            ## Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")
              
            ## Get model name
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
             
            ## Inference
            if not os.path.exists('results'): os.mkdir('results')
            with codecs.open("results/" + mname, "w", "utf-8") as fout:
                list_of_refs, hypotheses = [], []
                for i in range(len(X) // hp.batch_size):
                     
                    ### Get mini-batches
                    x = X[i*hp.batch_size: (i+1)*hp.batch_size]
                    sources = Sources[i*hp.batch_size: (i+1)*hp.batch_size]
                    targets = Targets[i*hp.batch_size: (i+1)*hp.batch_size]
                     
                    ### Autoregressive inference
                    preds = np.zeros((hp.batch_size, hp.maxlen), np.int32)
                    for j in range(hp.maxlen):
                        _preds = sess.run(g.preds, {g.x: x, g.y: preds})
                        preds[:, j] = _preds[:, j]
                     
                    ### Write to file
                    for source, target, pred in zip(sources, targets, preds): # sentence-wise
                        got = " ".join(idx2en[idx] for idx in pred).split("</S>")[0].strip()
                        fout.write("- source: " + source +"\n")
                        fout.write("- expected: " + target + "\n")
                        fout.write("- got: " + got + "\n\n")
                        fout.flush()
                          
                        # bleu score
                        ref = target.split()
                        hypothesis = got.split()
                        if len(ref) > 3 and len(hypothesis) > 3:
                            list_of_refs.append([ref])
                            hypotheses.append(hypothesis)
              
                ## Calculate bleu score
                score = corpus_bleu(list_of_refs, hypotheses)
                fout.write("Bleu Score = " + str(100*score)) 
开发者ID:Kyubyong,项目名称:transformer,代码行数:60,代码来源:eval.py

示例8: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval(): 
    # Load graph
    g = Graph(mode="test")
    print("Graph loaded")

    # Load batch
    _Y = load_data(mode="test")

    X = np.zeros((len(_Y), hp.maxlen))
    Y = np.zeros((len(_Y), hp.maxlen))
    for i, y in enumerate(_Y):
        y = np.fromstring(y, np.int32)
        Y[i][:len(y)] = y
        np.random.shuffle(y)
        X[i][:len(y)] = y

    word2idx, idx2word = g.word2idx, g.idx2word
     
    # Start session         
    with g.graph.as_default():    
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # inference
            if not os.path.exists('results'): os.mkdir('results')
            with codecs.open("results/" + mname, "w", "utf-8") as fout:
                num_words, total_edit_distance = 0, 0
                for i in range(0, len(Y), hp.batch_size):
                    ### Get mini-batches
                    x = X[i:i+hp.batch_size]
                    y = Y[i:i+hp.batch_size]

                    ### Autoregressive inference
                    preds = np.zeros((hp.batch_size, hp.maxlen), np.int32)
                    for j in range(hp.maxlen):
                        _preds = sess.run(g.preds, {g.x: x, g.y: preds})
                        preds[:, j] = _preds[:, j]

                    for xx, yy, pred in zip(x, y, preds):  # sentence-wise
                        inputs = " ".join(idx2word[idx] for idx in xx).replace("_", "").strip()
                        expected = " ".join(idx2word[idx] for idx in yy).replace("_", "").strip()
                        got = " ".join(idx2word[idx] for idx in pred[:len(inputs.split())])

                        edit_distance = distance.levenshtein(expected.split(), got.split())
                        total_edit_distance += edit_distance
                        num_words += len(expected.split())

                        fout.write(u"Inputs  : {}\n".format(inputs))
                        fout.write(u"Expected: {}\n".format(expected))
                        fout.write(u"Got     : {}\n".format(got))
                        fout.write(u"WER     : {}\n\n".format(edit_distance))
                fout.write(u"Total WER: {}/{}={}\n".format(total_edit_distance,
                                                           num_words,
                                                        round(float(total_edit_distance) / num_words, 2))) 
开发者ID:Kyubyong,项目名称:word_ordering,代码行数:61,代码来源:eval.py

示例9: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval():
	g = Graph(is_training = False)
	print("MSG : Graph loaded!")

	X, Sources, Targets = load_data('test')
	en2idx, idx2en = load_vocab('en.vocab.tsv')
	de2idx, idx2de = load_vocab('de.vocab.tsv')

	with g.graph.as_default():
		sv = tf.train.Supervisor()
		with sv.managed_session(config = tf.ConfigProto(allow_soft_placement = True)) as sess:
			# load pre-train model
			sv.saver.restore(sess, tf.train.latest_checkpoint(pm.checkpoint))
			print("MSG : Restore Model!")

			mname = open(pm.checkpoint + '/checkpoint', 'r').read().split('"')[1]

			if not os.path.exists('Results'):
				os.mkdir('Results')
			with codecs.open("Results/" + mname, 'w', 'utf-8') as f:
				list_of_refs, predict = [], []
				# Get a batch
				for i in range(len(X) // pm.batch_size):
					x = X[i * pm.batch_size: (i + 1) * pm.batch_size]
					sources = Sources[i * pm.batch_size: (i + 1) * pm.batch_size]
					targets = Targets[i * pm.batch_size: (i + 1) * pm.batch_size]

					# Autoregressive inference
					preds = np.zeros((pm.batch_size, pm.maxlen), dtype = np.int32)
					for j in range(pm.maxlen):
						_preds = sess.run(g.preds, feed_dict = {g.inpt: x, g.outpt: preds})
						preds[:, j] = _preds[:, j]

					for source, target, pred in zip(sources, targets, preds):
						got = " ".join(idx2de[idx] for idx in pred).split("<EOS>")[0].strip()
						f.write("- Source: {}\n".format(source))
						f.write("- Ground Truth: {}\n".format(target))
						f.write("- Predict: {}\n\n".format(got))
						f.flush()

						# Bleu Score
						ref = target.split()
						prediction = got.split()
						if len(ref) > pm.word_limit_lower and len(prediction) > pm.word_limit_lower:
							list_of_refs.append([ref])
							predict.append(prediction)

				score = corpus_bleu(list_of_refs, predict)
				f.write("Bleu Score = " + str(100 * score)) 
开发者ID:EternalFeather,项目名称:Transformer-in-generating-dialogue,代码行数:51,代码来源:eval.py

示例10: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval():
    # Load graph
    g = Graph(is_training=False)
    print("Graph loaded")

    # Load data
    X, Y = load_data(mode="test")  # texts
    char2idx, idx2char = load_vocab()

    with g.graph.as_default():
        sv = tf.train.Supervisor()
        with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
            # Restore parameters
            sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
            print("Restored!")

            # Get model
            mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1]  # model name

            # Inference
            if not os.path.exists(hp.savedir): os.mkdir(hp.savedir)
            with open("{}/{}".format(hp.savedir, mname), 'w') as fout:
                results = []
                baseline_results = []
                for step in range(len(X) // hp.batch_size):
                    x = X[step * hp.batch_size: (step + 1) * hp.batch_size]
                    y = Y[step * hp.batch_size: (step + 1) * hp.batch_size]

                    # predict characters
                    preds = sess.run(g.preds, {g.x: x})

                    for xx, yy, pp in zip(x, y, preds):  # sentence-wise
                        expected = ''
                        got = ''
                        for xxx, yyy, ppp in zip(xx, yy, pp):  # character-wise
                            if xxx == 0:
                                break
                            else:
                                got += idx2char.get(xxx, "*")
                                expected += idx2char.get(xxx, "*")
                            if ppp == 1: got += " "
                            if yyy == 1: expected += " "

                            # prediction results
                            if ppp == yyy:
                                results.append(1)
                            else:
                                results.append(0)

                            # baseline results
                            if yyy == 0: # no space
                                baseline_results.append(1)
                            else:
                                baseline_results.append(0)

                        fout.write("▌Expected: " + expected + "\n")
                        fout.write("▌Got: " + got + "\n\n")
                fout.write(
                    "Final Accuracy = %d/%d=%.4f\n" % (sum(results), len(results), float(sum(results)) / len(results)))
                fout.write(
                    "Baseline Accuracy = %d/%d=%.4f" % (sum(baseline_results), len(baseline_results), float(sum(baseline_results)) / len(baseline_results))) 
开发者ID:Kyubyong,项目名称:neural_tokenizer,代码行数:63,代码来源:eval.py

示例11: eval

# 需要导入模块: import train [as 别名]
# 或者: from train import Graph [as 别名]
def eval(): 
    # Load graph
    g = Graph(mode="inference"); print("Graph Loaded")
        
    with tf.Session() as sess:
        # Initialize variables
        tf.sg_init(sess)

        # Restore parameters
        saver = tf.train.Saver()
        saver.restore(sess, tf.train.latest_checkpoint('asset/train'))
        print("Restored!")
        mname = open('asset/train/checkpoint', 'r').read().split('"')[1] # model name
        
        # Load data
        X, Sources, Targets = load_test_data()
        char2idx, idx2char = load_vocab()
        
        with codecs.open(mname, "w", "utf-8") as fout:
            list_of_refs, hypotheses = [], []
            for i in range(len(X) // Hp.batch_size):
                # Get mini-batches
                x = X[i*Hp.batch_size: (i+1)*Hp.batch_size] # mini-batch
                sources = Sources[i*Hp.batch_size: (i+1)*Hp.batch_size]
                targets = Targets[i*Hp.batch_size: (i+1)*Hp.batch_size]
                
                preds_prev = np.zeros((Hp.batch_size, Hp.maxlen), np.int32)
                preds = np.zeros((Hp.batch_size, Hp.maxlen), np.int32)        
                for j in range(Hp.maxlen):
                    # predict next character
                    outs = sess.run(g.preds, {g.x: x, g.y_src: preds_prev})
                    # update character sequence
                    if j < Hp.maxlen - 1:
                        preds_prev[:, j + 1] = outs[:, j]
                    preds[:, j] = outs[:, j]
                
                # Write to file
                for source, target, pred in zip(sources, targets, preds): # sentence-wise
                    got = "".join(idx2char[idx] for idx in pred).split(u"␃")[0]
                    fout.write("- source: " + source +"\n")
                    fout.write("- expected: " + target + "\n")
                    fout.write("- got: " + got + "\n\n")
                    fout.flush()
                    
                    # For bleu score
                    ref = target.split()
                    hypothesis = got.split()
                    if len(ref) > 2:
                        list_of_refs.append([ref])
                        hypotheses.append(hypothesis)
            
            # Get bleu score
            score = corpus_bleu(list_of_refs, hypotheses)
            fout.write("Bleu Score = " + str(100*score)) 
开发者ID:Kyubyong,项目名称:quasi-rnn,代码行数:56,代码来源:eval.py


注:本文中的train.Graph方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。