本文整理汇总了Python中tqdm.tqdm.tqdm方法的典型用法代码示例。如果您正苦于以下问题:Python tqdm.tqdm方法的具体用法?Python tqdm.tqdm怎么用?Python tqdm.tqdm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tqdm.tqdm
的用法示例。
在下文中一共展示了tqdm.tqdm方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_tqdm_kwargs
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def get_tqdm_kwargs(**kwargs):
"""
Return default arguments to be used with tqdm.
Args:
kwargs: extra arguments to be used.
Returns:
dict:
"""
default = dict(
smoothing=0.5,
dynamic_ncols=True,
ascii=True,
bar_format='{l_bar}{bar}|{n_fmt}/{total_fmt}[{elapsed}<{remaining},{rate_noinv_fmt}]'
)
try:
# Use this env var to override the refresh interval setting
interval = float(os.environ['TENSORPACK_PROGRESS_REFRESH'])
except KeyError:
interval = _pick_tqdm_interval(kwargs.get('file', sys.stderr))
default['mininterval'] = interval
default.update(kwargs)
return default
示例2: get_tqdm
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def get_tqdm(*args, **kwargs):
""" Similar to :func:`tqdm.tqdm()`,
but use tensorpack's default options to have consistent style. """
return tqdm(*args, **get_tqdm_kwargs(**kwargs))
示例3: __call__
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def __call__(self, blockno, readsize, totalsize):
if self.t is None:
self.t = tqdm.tqdm(total=totalsize)
self.t.update(readsize)
示例4: _download_and_extract
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def _download_and_extract(self, path, filename):
import shutil, zipfile, zlib
from tqdm import tqdm
import urllib.request
fn = os.path.join(path, filename)
with PBar() as pb:
urllib.request.urlretrieve(self.url, fn, pb)
print('Download finished. Unzipping the file...')
with zipfile.ZipFile(fn) as zf:
zf.extractall(path)
print('Unzip finished.')
示例5: _reporthook
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def _reporthook(t):
""" ``reporthook`` to use with ``urllib.request`` that prints the process of the download.
Uses ``tqdm`` for progress bar.
**Reference:**
https://github.com/tqdm/tqdm
Args:
t (tqdm.tqdm) Progress bar.
Example:
>>> with tqdm(unit='B', unit_scale=True, miniters=1, desc=filename) as t: # doctest: +SKIP
... urllib.request.urlretrieve(file_url, filename=full_path, reporthook=reporthook(t))
"""
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
Args:
b (int, optional): Number of blocks just transferred [default: 1].
bsize (int, optional): Size of each block (in tqdm units) [default: 1].
tsize (int, optional): Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
示例6: eval
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def eval(self, dataloader, yolo, test_num=10000):
labels = []
sample_metrics = [] # List of tuples (TP, confs, pred)
total_losses = list()
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Detecting objects")):
# Extract labels
labels += targets[:, 1].tolist()
# Rescale target
targets = Variable(targets.to(self.device), requires_grad=False)
imgs = Variable(imgs.type(Tensor), requires_grad=False)
with torch.no_grad():
loss, outputs = yolo(imgs, targets)
outputs = non_max_suppression(outputs, conf_thres=0.5, nms_thres=0.5)
total_losses.append(loss.item())
targets = targets.to("cpu")
targets[:, 2:] = xywh2xyxy(targets[:, 2:])
targets[:, 2:] *= int(self.model_config['img_size'])
sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=0.5)
if len(sample_metrics) > 0:
true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
else:
return 0.0, 0.0, 0.0
total_loss = sum(total_losses) / len(total_losses)
return total_loss, AP.mean(), recall.mean()
示例7: train_one_epoch
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def train_one_epoch(self):
"""
Return:
total_loss: the total loss during training
accuracy: the mAP
"""
pred_bboxes, pred_labels, pred_scores = list(), list(), list()
gt_bboxes, gt_labels, gt_difficults = list(), list(), list()
self.trainer.reset_meters()
for ii, (img, sizes, bbox_, label_, scale, gt_difficults_) in \
tqdm.tqdm(enumerate(self.dataloader)):
scale = at.scalar(scale)
img, bbox, label = img.cuda().float(), bbox_.cuda(), label_.cuda()
self.trainer.train_step(img, bbox, label, scale)
if (ii + 1) % self.opt.plot_every == 0:
sizes = [sizes[0][0].item(), sizes[1][0].item()]
pred_bboxes_, pred_labels_, pred_scores_ = \
self.faster_rcnn.predict(img, [sizes])
pred_bboxes += pred_bboxes_
pred_labels += pred_labels_
pred_scores += pred_scores_
gt_bboxes += list(bbox_.numpy())
gt_labels += list(label_.numpy())
gt_difficults += list(gt_difficults_.numpy())
return self.trainer.get_meter_data()['total_loss']
示例8: _pbar
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def _pbar(iterable, desc, leave=True, position=None, verbose='progressbar'):
if verbose is not False and \
verbose not in ['progressbar', 'tqdm', 'tqdm_notebook']:
raise ValueError('verbose must be one of {progressbar,'
'tqdm, tqdm_notebook, False}. Got %s' % verbose)
try:
from tqdm import tqdm
verbose = 'tqdm'
except ImportError:
pass
if verbose == 'progressbar':
from mne.utils import ProgressBar
pbar = ProgressBar(iterable, mesg=desc)
# XXX: remove the tqdm option after a few releases of MNE since it
# natively supported by the MNE progressbar
elif verbose == 'tqdm':
pbar = tqdm(iterable, desc=desc, leave=leave, position=position,
dynamic_ncols=True)
elif verbose == 'tqdm_notebook':
from tqdm import tqdm_notebook
pbar = tqdm_notebook(iterable, desc=desc, leave=leave,
position=position, dynamic_ncols=True)
elif verbose is False:
pbar = iterable
return pbar
示例9: clean_by_interp
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def clean_by_interp(inst, picks=None, verbose='progressbar'):
"""Clean epochs/evoked by LOOCV.
Parameters
----------
inst : instance of mne.Evoked or mne.Epochs
The evoked or epochs object.
picks : ndarray, shape(n_channels,) | None
The channels to be considered for autoreject. If None, defaults
to data channels {'meg', 'eeg'}.
verbose : 'tqdm', 'tqdm_notebook', 'progressbar' or False
The verbosity of progress messages.
If `'progressbar'`, use `mne.utils.ProgressBar`.
If `'tqdm'`, use `tqdm.tqdm`.
If `'tqdm_notebook'`, use `tqdm.tqdm_notebook`.
If False, suppress all output messages.
Returns
-------
inst_clean : instance of mne.Evoked or mne.Epochs
Instance after interpolation of bad channels.
"""
return _clean_by_interp(inst, picks=picks, verbose=verbose)
示例10: preprocess_images
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def preprocess_images(images, use_multiprocessing):
"""Resizes and shifts the dynamic range of image to 0-1
Args:
images: np.array, shape: (N, H, W, 3), dtype: float32 between 0-1 or np.uint8
use_multiprocessing: If multiprocessing should be used to pre-process the images
Return:
final_images: torch.tensor, shape: (N, 3, 299, 299), dtype: torch.float32 between 0-1
"""
if use_multiprocessing:
with multiprocessing.Pool(multiprocessing.cpu_count()) as pool:
jobs = []
for im in tqdm.tqdm(images, desc="Starting FID jobs"):
job = pool.apply_async(preprocess_image, (im,))
jobs.append(job)
final_images = torch.zeros(images.shape[0], 3, 299, 299)
for idx, job in enumerate(tqdm(jobs, desc="finishing jobs")):
im = job.get()
final_images[idx] = im#job.get()
else:
final_images = torch.zeros((len(images), 3, 299, 299), dtype=torch.float32)
for idx in range(len(images)):
im = preprocess_image(images[idx])
final_images[idx] = im
assert final_images.shape == (images.shape[0], 3, 299, 299)
assert final_images.max() <= 1.0
assert final_images.min() >= 0.0
assert final_images.dtype == torch.float32
return final_images
示例11: download_file_maybe_extract
# 需要导入模块: from tqdm import tqdm [as 别名]
# 或者: from tqdm.tqdm import tqdm [as 别名]
def download_file_maybe_extract(url, directory, filename=None, extension=None, check_files=[]):
""" Download the file at ``url`` to ``directory``. Extract to ``directory`` if tar or zip.
Args:
url (str or Path): Url of file.
directory (str): Directory to download to.
filename (str, optional): Name of the file to download; Otherwise, a filename is extracted
from the url.
extension (str, optional): Extension of the file; Otherwise, attempts to extract extension
from the filename.
check_files (list of str or Path): Check if these files exist, ensuring the download
succeeded. If these files exist before the download, the download is skipped.
Returns:
(str): Filename of download file.
Raises:
ValueError: Error if one of the ``check_files`` are not found following the download.
"""
if filename is None:
filename = _get_filename_from_url(url)
directory = str(directory)
filepath = os.path.join(directory, filename)
check_files = [os.path.join(directory, str(f)) for f in check_files]
if len(check_files) > 0 and _check_download(*check_files):
return filepath
if not os.path.isdir(directory):
os.makedirs(directory)
logger.info('Downloading {}'.format(filename))
# Download
if 'drive.google.com' in url:
_download_file_from_drive(filepath, url)
else:
with tqdm(unit='B', unit_scale=True, miniters=1, desc=filename) as t:
urllib.request.urlretrieve(url, filename=filepath, reporthook=_reporthook(t))
_maybe_extract(compressed_filename=filepath, directory=directory, extension=extension)
if not _check_download(*check_files):
raise ValueError('[DOWNLOAD FAILED] `*check_files` not found')
return filepath