本文整理汇总了Python中tqdm.auto.tqdm.auto方法的典型用法代码示例。如果您正苦于以下问题:Python tqdm.auto方法的具体用法?Python tqdm.auto怎么用?Python tqdm.auto使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tqdm.auto.tqdm
的用法示例。
在下文中一共展示了tqdm.auto方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _download
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def _download(url: str, path: Path):
try:
import ipywidgets
from tqdm.auto import tqdm
except ModuleNotFoundError:
from tqdm import tqdm
from urllib.request import urlretrieve
path.parent.mkdir(parents=True, exist_ok=True)
with tqdm(unit='B', unit_scale=True, miniters=1, desc=path.name) as t:
def update_to(b=1, bsize=1, tsize=None):
if tsize is not None:
t.total = tsize
t.update(b * bsize - t.n)
try:
urlretrieve(url, str(path), reporthook=update_to)
except Exception:
# Make sure file doesn’t exist half-downloaded
if path.is_file():
path.unlink()
raise
示例2: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(self, k: int = 10, return_value: str = 'k_skewness',
hub_size: float = 2., metric='euclidean',
store_k_neighbors: bool = False, store_k_occurrence: bool = False,
algorithm: str = 'auto', algorithm_params: dict = None,
hubness: str = None, hubness_params: dict = None,
verbose: int = 0, n_jobs: int = 1, random_state=None,
shuffle_equal: bool = True):
self.k = k
self.return_value = return_value
self.hub_size = hub_size
self.metric = metric
self.store_k_neighbors = store_k_neighbors
self.store_k_occurrence = store_k_occurrence
self.algorithm = algorithm
self.algorithm_params = algorithm_params
self.hubness = hubness
self.hubness_params = hubness_params
self.verbose = verbose
self.n_jobs = n_jobs
self.random_state = random_state
self.shuffle_equal = shuffle_equal
示例3: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(self, n_neighbors: int = 5, weights: str = 'uniform',
algorithm: str = 'auto', algorithm_params: dict = None,
hubness: str = None, hubness_params: dict = None,
leaf_size: int = 30, p=2, metric='minkowski', metric_params=None,
n_jobs=None, verbose: int = 0, **kwargs):
super().__init__(
n_neighbors=n_neighbors,
algorithm=algorithm,
algorithm_params=algorithm_params,
hubness=hubness,
hubness_params=hubness_params,
leaf_size=leaf_size, metric=metric, p=p,
metric_params=metric_params,
n_jobs=n_jobs,
verbose=verbose,
**kwargs)
self.weights = _check_weights(weights)
示例4: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(self, n_neighbors=None, radius=None,
algorithm='auto', algorithm_params: dict = None,
hubness: str = None, hubness_params: dict = None,
leaf_size=30, metric='minkowski', p=2, metric_params=None,
n_jobs=None, verbose: int = 0, **kwargs):
super().__init__(n_neighbors=n_neighbors,
radius=radius,
algorithm=algorithm,
leaf_size=leaf_size,
metric=metric, p=p, metric_params=metric_params,
n_jobs=n_jobs)
if algorithm_params is None:
n_candidates = 1 if hubness is None else 100
algorithm_params = {'n_candidates': n_candidates,
'metric': metric}
if n_jobs is not None and 'n_jobs' not in algorithm_params:
algorithm_params['n_jobs'] = self.n_jobs
if 'verbose' not in algorithm_params:
algorithm_params['verbose'] = verbose
hubness_params = hubness_params if hubness_params is not None else {}
if 'verbose' not in hubness_params:
hubness_params['verbose'] = verbose
self.algorithm_params = algorithm_params
self.hubness_params = hubness_params
self.hubness = hubness
self.verbose = verbose
self.kwargs = kwargs
示例5: _check_algorithm_metric
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def _check_algorithm_metric(self):
if self.algorithm not in ['auto', *EXACT_ALG, *ANN_ALG]:
raise ValueError("unrecognized algorithm: '%s'" % self.algorithm)
if self.algorithm == 'auto':
if self.metric == 'precomputed':
alg_check = 'brute'
elif (callable(self.metric) or
self.metric in VALID_METRICS['ball_tree']):
alg_check = 'ball_tree'
else:
alg_check = 'brute'
else:
alg_check = self.algorithm
if callable(self.metric):
if self.algorithm in ['kd_tree', *ANN_ALG]:
# callable metric is only valid for brute force and ball_tree
raise ValueError(f"{self.algorithm} algorithm does not support callable metric '{self.metric}'")
elif self.metric not in VALID_METRICS[alg_check]:
raise ValueError(f"Metric '{self.metric}' not valid. Use "
f"sorted(skhubness.neighbors.VALID_METRICS['{alg_check}']) "
f"to get valid options. "
f"Metric can also be a callable function.")
if self.metric_params is not None and 'p' in self.metric_params:
warnings.warn("Parameter p is found in metric_params. "
"The corresponding parameter from __init__ "
"is ignored.", SyntaxWarning, stacklevel=3)
effective_p = self.metric_params['p']
else:
effective_p = self.p
if self.metric in ['wminkowski', 'minkowski'] and effective_p <= 0:
raise ValueError("p must be greater than zero for minkowski metric")
示例6: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(self, n_candidates: int = 5,
metric: str = 'euclidean',
index_dir: str = 'auto',
optimize: bool = False,
edge_size_for_creation: int = 80,
edge_size_for_search: int = 40,
num_incoming: int = -1,
num_outgoing: int = -1,
epsilon: float = 0.1,
n_jobs: int = 1,
verbose: int = 0):
if ngtpy is None: # pragma: no cover
raise ImportError(f'Please install the `ngt` package, before using this class.\n'
f'$ pip3 install ngt') from None
super().__init__(n_candidates=n_candidates,
metric=metric,
n_jobs=n_jobs,
verbose=verbose,
)
self.index_dir = index_dir
self.optimize = optimize
self.edge_size_for_creation = edge_size_for_creation
self.edge_size_for_search = edge_size_for_search
self.num_incoming = num_incoming
self.num_outgoing = num_outgoing
self.epsilon = epsilon
示例7: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(self, frontend="auto", **kwargs):
"""
Parameters
----------
frontend : {"auto", "console", "gui", "notebook"}, optional
Selects a frontend for displaying the progress bar. By default ("auto"),
the frontend is chosen by guessing in which environment the simulation
is run. The "console" frontend displays an ascii progress bar, while the
"gui" frontend is based on matplotlib and the "notebook" frontend is based
on ipywidgets.
**kwargs : dict, optional
Arbitrary keyword arguments for progress bar customization.
See https://tqdm.github.io/docs/tqdm/.
"""
if frontend == "auto":
from tqdm.auto import tqdm
elif frontend == "console":
from tqdm import tqdm
elif frontend == "gui":
from tqdm.gui import tqdm
elif frontend == "notebook":
from tqdm.notebook import tqdm
else:
raise ValueError(
f"Frontend argument {frontend!r} not supported. "
"Please select one of the following: "
", ".join(["auto", "console", "gui", "notebook"])
)
self.custom_description = False
if "desc" in kwargs.keys():
self.custom_description = True
self.tqdm = tqdm
self.tqdm_kwargs = {"bar_format": "{bar} {percentage:3.0f}% | {desc} "}
self.tqdm_kwargs.update(kwargs)
示例8: __init__
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def __init__(
self,
metrics_separator: str = " - ",
overall_bar_format: str = "{l_bar}{bar} {n_fmt}/{total_fmt} ETA: "
"{remaining}s, {rate_fmt}{postfix}",
epoch_bar_format: str = "{n_fmt}/{total_fmt}{bar} ETA: "
"{remaining}s - {desc}",
metrics_format: str = "{name}: {value:0.4f}",
update_per_second: int = 10,
leave_epoch_progress: bool = True,
leave_overall_progress: bool = True,
show_epoch_progress: bool = True,
show_overall_progress: bool = True,
):
try:
# import tqdm here because tqdm is not a required package
# for addons
import tqdm
version_message = "Please update your TQDM version to >= 4.36.1, "
"you have version {}. To update, run !pip install -U tqdm"
assert tqdm.__version__ >= "4.36.1", version_message.format(
tqdm.__version__
)
from tqdm.auto import tqdm
self.tqdm = tqdm
except ImportError:
raise ImportError("Please install tqdm via pip install tqdm")
self.metrics_separator = metrics_separator
self.overall_bar_format = overall_bar_format
self.epoch_bar_format = epoch_bar_format
self.leave_epoch_progress = leave_epoch_progress
self.leave_overall_progress = leave_overall_progress
self.show_epoch_progress = show_epoch_progress
self.show_overall_progress = show_overall_progress
self.metrics_format = metrics_format
# compute update interval (inverse of update per second)
self.update_interval = 1 / update_per_second
self.last_update_time = time.time()
self.overall_progress_tqdm = None
self.epoch_progress_tqdm = None
self.is_training = False
self.num_epochs = None
self.logs = None
super().__init__()
示例9: run_simulation_alg
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def run_simulation_alg(self, alg, start, end, delay_factor=True):
from tqdm.auto import tqdm
alg.blotter.clear()
# get factor data from algorithm
run_engine = alg.run_engine
data, _ = run_engine(start, end, delay_factor)
ticks = self.get_data_ticks(data, start)
if len(ticks) == 0:
raise ValueError("No data returned, please set `start`, `end` time correctly")
data = self.wrap_data(data, DataLoaderFastGetter)
# mock CustomAlgorithm
alg.run_engine = lambda *args: (self._mocked_data, self._mocked_last)
if 'empty_cache_after_run' in alg.__dict__:
for eng in alg._engines.values():
eng.empty_cache()
gc.collect()
torch.cuda.empty_cache()
# infer freq
delta = min(ticks[1:] - ticks[:-1])
data_freq = delta.resolution_string
# loop factor data
last_day = None
for dt in tqdm(ticks):
if self._stop:
break
# prepare data
self.mock_data(data, dt)
# if date changed
if dt.day != last_day:
if last_day is not None:
self.fire_market_close(alg)
alg.set_datetime(dt)
# fire daily data event
if data_freq == 'D':
self.fire_event(self, EveryBarData)
# fire open event
if dt.day != last_day:
self.fire_market_open(alg)
last_day = dt.day
# fire intraday data event
if data_freq != 'D':
alg.blotter.set_price('close')
self.fire_event(self, EveryBarData)
self.fire_market_close(alg)
alg.run_engine = run_engine
示例10: fit
# 需要导入模块: from tqdm.auto import tqdm [as 别名]
# 或者: from tqdm.auto.tqdm import auto [as 别名]
def fit(self, X, y=None) -> RandomProjectionTree:
""" Build the annoy.Index and insert data from X.
Parameters
----------
X: np.array
Data to be indexed
y: any
Ignored
Returns
-------
self: RandomProjectionTree
An instance of RandomProjectionTree with a built index
"""
if y is None:
X = check_array(X)
else:
X, y = check_X_y(X, y)
self.y_train_ = y
self.n_samples_fit_ = X.shape[0]
self.n_features_ = X.shape[1]
self.X_dtype_ = X.dtype
if self.metric == 'minkowski': # for compatibility
self.metric = 'euclidean'
metric = self.metric if self.metric != 'sqeuclidean' else 'euclidean'
self.effective_metric_ = metric
annoy_index = annoy.AnnoyIndex(X.shape[1], metric=metric)
if self.mmap_dir == 'auto':
self.annoy_ = create_tempfile_preferably_in_dir(prefix='skhubness_',
suffix='.annoy',
directory='/dev/shm')
logging.warning(f'The index will be stored in {self.annoy_}. '
f'It will NOT be deleted automatically, when this instance is destructed.')
elif isinstance(self.mmap_dir, str):
self.annoy_ = create_tempfile_preferably_in_dir(prefix='skhubness_',
suffix='.annoy',
directory=self.mmap_dir)
else: # e.g. None
self.mmap_dir = None
for i, x in tqdm(enumerate(X),
desc='Build RPtree',
disable=False if self.verbose else True,
):
annoy_index.add_item(i, x.tolist())
annoy_index.build(self.n_trees)
if self.mmap_dir is None:
self.annoy_ = annoy_index
else:
annoy_index.save(self.annoy_, )
return self