本文整理汇总了Python中torchvision.utils.make_grid方法的典型用法代码示例。如果您正苦于以下问题:Python utils.make_grid方法的具体用法?Python utils.make_grid怎么用?Python utils.make_grid使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.utils
的用法示例。
在下文中一共展示了utils.make_grid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tensor2img
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
示例2: plot_images_grid
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def plot_images_grid(x: torch.tensor, export_img, title: str = '', nrow=8, padding=2, normalize=False, pad_value=0):
"""Plot 4D Tensor of images of shape (B x C x H x W) as a grid."""
grid = make_grid(x, nrow=nrow, padding=padding, normalize=normalize, pad_value=pad_value)
npgrid = grid.cpu().numpy()
plt.imshow(np.transpose(npgrid, (1, 2, 0)), interpolation='nearest')
ax = plt.gca()
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
if not (title == ''):
plt.title(title)
plt.savefig(export_img, bbox_inches='tight', pad_inches=0.1)
plt.clf()
示例3: get_image
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def get_image(gen, point):
"""
obtain an All-resolution grid of images from the given point
:param gen: the generator object
:param point: random latent point for generation
:return: img => generated image
"""
images = list(map(lambda x: x.detach(), gen(point)))[1:]
images = [adjust_dynamic_range(image) for image in images]
images = progressive_upscaling(images)
images = list(map(lambda x: x.squeeze(dim=0), images))
image = make_grid(
images,
nrow=int(ceil(sqrt(len(images))))
)
return image.cpu().numpy().transpose(1, 2, 0)
示例4: train
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def train(self, data_loader, epochs, save_training_gif=True):
if save_training_gif:
# Fix latents to see how image generation improves during training
fixed_latents = Variable(self.G.sample_latent(64))
if self.use_cuda:
fixed_latents = fixed_latents.cuda()
training_progress_images = []
for epoch in range(epochs):
print("\nEpoch {}".format(epoch + 1))
self._train_epoch(data_loader)
if save_training_gif:
# Generate batch of images and convert to grid
img_grid = make_grid(self.G(fixed_latents).cpu().data)
# Convert to numpy and transpose axes to fit imageio convention
# i.e. (width, height, channels)
img_grid = np.transpose(img_grid.numpy(), (1, 2, 0))
# Add image grid to training progress
training_progress_images.append(img_grid)
if save_training_gif:
imageio.mimsave('./training_{}_epochs.gif'.format(epochs),
training_progress_images)
示例5: tensor2img
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
示例6: batch_lab2rgb_transpose_mc
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def batch_lab2rgb_transpose_mc(img_l_mc, img_ab_mc):
if isinstance(img_l_mc, Variable):
img_l_mc = img_l_mc.data.cpu()
if isinstance(img_ab_mc, Variable):
img_ab_mc = img_ab_mc.data.cpu()
if img_l_mc.is_cuda:
img_l_mc = img_l_mc.cpu()
if img_ab_mc.is_cuda:
img_ab_mc = img_ab_mc.cpu()
assert img_l_mc.dim()==4 and img_ab_mc.dim()==4, 'only for batch input'
img_l = img_l_mc*l_norm + l_mean
img_ab = img_ab_mc*ab_norm + ab_mean
pred_lab = torch.cat((img_l, img_ab), dim=1)
grid_lab = vutils.make_grid(pred_lab).numpy().astype('float64')
grid_rgb = (np.clip(color.lab2rgb(grid_lab.transpose((1, 2, 0))), 0, 1)*255).astype('uint8')
return grid_rgb
示例7: show_landmarks_batch
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def show_landmarks_batch(sample_batched):
images_batch, landmarks_batch = sample_batched['image'], sample_batched['landmarks']
batch_size = len(images_batch)
im_size = images_batch.size(2)
grid_border_size = 2
grid = utils.make_grid(images_batch)
plt.imshow(grid.numpy().transpose(1, 2, 0))
for i in range(batch_size):
plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size,
landmarks_batch[i, :, 1].numpy() + grid_border_size,
s=10,
marker='.',
c='r')
plt.title('Batch form dataloader')
示例8: sample_images
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = Variable(imgs["A"].type(Tensor))
fake_B = G_AB(real_A)
real_B = Variable(imgs["B"].type(Tensor))
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A = make_grid(real_A, nrow=5, normalize=True)
real_B = make_grid(real_B, nrow=5, normalize=True)
fake_A = make_grid(fake_A, nrow=5, normalize=True)
fake_B = make_grid(fake_B, nrow=5, normalize=True)
# Arange images along y-axis
image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1)
save_image(image_grid, "images/%s/%s.png" % (opt.dataset_name, batches_done), normalize=False)
# ----------
# Training
# ----------
示例9: save_images
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def save_images(logger, mode_tag, images_dict, global_step):
images_dict = tensor2numpy(images_dict)
for tag, values in images_dict.items():
if not isinstance(values, list) and not isinstance(values, tuple):
values = [values]
for idx, value in enumerate(values):
if len(value.shape) == 3:
value = value[:, np.newaxis, :, :]
value = value[:1]
value = torch.from_numpy(value)
image_name = '{}/{}'.format(mode_tag, tag)
if len(values) > 1:
image_name = image_name + "_" + str(idx)
logger.add_image(image_name, vutils.make_grid(value, padding=0, nrow=1, normalize=True, scale_each=True),
global_step)
示例10: plot_spikes
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def plot_spikes(
self,
spike_record: Dict[str, torch.Tensor],
tag: str = "spike",
step: int = None,
) -> None:
# language=rst
"""
Plots all spike records inside of ``spike_record``. Keeps unique
plots for all unique tags that are given.
:param spike_record: Dictionary of spikes to be rasterized.
:param tag: A unique tag to associate the data with.
:param step: The step of the pipeline.
"""
for k, spikes in spike_record.items():
# shuffle spikes into 1x1x#NueronsxT
spikes = spikes.view(1, 1, -1, spikes.shape[-1]).float()
spike_grid_img = make_grid(spikes, nrow=1, pad_value=0.5)
self.writer.add_image(tag + "_" + str(k), spike_grid_img, step)
示例11: plot_voltages
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def plot_voltages(
self,
voltage_record: Dict[str, torch.Tensor],
thresholds: Optional[Dict[str, torch.Tensor]] = None,
tag: str = "voltage",
step: int = None,
) -> None:
# language=rst
"""
Plots all voltage records and given thresholds. Keeps unique
plots for all unique tags that are given.
:param voltage_record: Dictionary of voltages for neurons inside of networks
organized by the layer they correspond to.
:param thresholds: Optional dictionary of threshold values for neurons.
:param tag: A unique tag to associate the data with.
:param step: The step of the pipeline.
"""
for k, v in voltage_record.items():
# Shuffle voltages into 1x1x#neuronsxT
v = v.view(1, 1, -1, v.shape[-1])
voltage_grid_img = make_grid(v, nrow=1, pad_value=0)
self.writer.add_image(tag + "_" + str(k), voltage_grid_img, step)
示例12: image
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def image(self, img_tensors: torch.Tensor, global_step: int, tag: str = "Train/input",
grid_size: Union[list, tuple] = (3, 1), shuffle=True, save_file=False):
if len(img_tensors.size()) != 4:
raise TypeError("img_tensors rank should be 4, got %d instead" % len(img_tensors.size()))
self._build_dir(os.path.join(self.logdir, "plots", tag))
rows, columns = grid_size[0], grid_size[1]
batch_size = len(img_tensors) # img_tensors =>(batchsize, 3, 256, 256)
num_samples: int = min(batch_size, rows * columns)
sampled_tensor = self._sample(img_tensors, num_samples, shuffle).detach().cpu()
# (sample_num, 3, 32,32) tensors
# sampled_images = map(transforms.Normalize(mean, std), sampled_tensor) # (sample_num, 3, 32,32) images
sampled_images: torch.Tensor = make_grid(sampled_tensor, nrow=rows, normalize=True, scale_each=True)
self.writer.add_image(tag, sampled_images, global_step)
if save_file:
img = transforms.ToPILImage()(sampled_images)
filename = "%s/plots/%s/E%03d.png" % (self.logdir, tag, global_step)
img.save(filename)
示例13: show_segmentation
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def show_segmentation(img, gt, pred, mean, std, colormap):
colormap = colormap.to(img.device)
gt = F.embedding(gt, colormap).permute(2, 0, 1).div(255)
pred = F.embedding(pred, colormap).permute(2, 0, 1).div(255)
mean = torch.as_tensor(mean, dtype=torch.float32, device=img.device)
std = torch.as_tensor(std, dtype=torch.float32, device=img.device)
img = img * std[:, None, None] + mean[:, None, None]
grid = torch.stack([img, gt, pred], 0)
grid = make_grid(grid, nrow=3)
grid = (
grid.mul_(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to('cpu', torch.uint8)
.numpy()
)
img = Image.fromarray(grid)
return img
示例14: sample
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def sample(self, z, y_onehot, eps_std=0.5):
"""
Sample image
:param z: latent feature vector
:type z: torch.Tensor or None
:param y_onehot: one-hot vector of label
:type y_onehot: torch.Tensor or None
:param eps_std: standard deviation of eps
:type eps_std: float
:return: generated image
:rtype: torch.Tensor
"""
with torch.no_grad():
# generate sample from model
img = self.graph(z=z, y_onehot=y_onehot, eps_std=eps_std, reverse=True)
# create image grid
grid = make_grid(img)
return grid
示例15: get_filter_images
# 需要导入模块: from torchvision import utils [as 别名]
# 或者: from torchvision.utils import make_grid [as 别名]
def get_filter_images(self):
"""
Generate a grid of images representing the convolution layer weights
:return: list of images
"""
images = []
x = 0
for mod in self.conv:
if type(mod) == nn.modules.conv.Conv2d:
orig_shape = mod.weight.data.shape
weights = mod.weight.data.view(
[orig_shape[0] * orig_shape[1], orig_shape[2], orig_shape[3]]).unsqueeze(1)
rows = 2 ** math.ceil(math.sqrt(math.sqrt(weights.shape[0])))
images.append(("CNN.{}".format(x),
vutils.make_grid(weights, nrow=rows, padding=1, normalize=True, scale_each=True)))
x += 1
return images