本文整理汇总了Python中torchvision.transforms.transforms.ToTensor方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.ToTensor方法的具体用法?Python transforms.ToTensor怎么用?Python transforms.ToTensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.transforms
的用法示例。
在下文中一共展示了transforms.ToTensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: preprocess
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例2: preprocess
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def preprocess(self,image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
# resize according to the rules:
# 1. scale shorter side to IMAGE_MIN_SIDE
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
scale_for_shorter_side = image_min_side / min(image.width, image.height)
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
scale = scale_for_shorter_side * scale_for_longer_side
transform = transforms.Compose([
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(image)
return image, scale
示例3: pil_to_tensor
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def pil_to_tensor(img, shape=(64, 64, 3), transform=None):
"""
Convert PIL image to float tensor
:param img: PIL image
:type img: Image.Image
:param shape: image shape in (H, W, C)
:type shape: tuple or list
:param transform: image transform
:return: tensor
:rtype: torch.Tensor
"""
if transform is None:
transform = transforms.Compose((
transforms.Resize(shape[0]),
transforms.ToTensor()
))
return transform(img)
示例4: get_datasets
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def get_datasets(initial_pool):
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(30),
transforms.ToTensor(),
transforms.Normalize(3 * [0.5], 3 * [0.5]), ])
test_transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(3 * [0.5], 3 * [0.5]),
]
)
# Note: We use the test set here as an example. You should make your own validation set.
train_ds = datasets.CIFAR10('.', train=True,
transform=transform, target_transform=None, download=True)
test_set = datasets.CIFAR10('.', train=False,
transform=test_transform, target_transform=None, download=True)
active_set = ActiveLearningDataset(train_ds, pool_specifics={'transform': test_transform})
# We start labeling randomly.
active_set.label_randomly(initial_pool)
return active_set, test_set
示例5: prepare_data
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def prepare_data(images, color_mode='BGR', new_shape=416, color=(127.5, 127.5, 127.5), mode='square'):
images_ok = np.zeros((images.shape[0], new_shape, new_shape, 3), dtype=images[0].dtype)
images_tensor = torch.zeros((images.shape[0], 3, new_shape, new_shape), dtype=torch.float32)
for i in range(len(images)):
if color_mode == 'BGR':
images[i] = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)
elif color_mode == 'RGB':
pass
else:
raise NotImplementedError
images_ok[i], _, _, _ = letterbox(images[i], new_shape, color, mode)
images_tensor[i] = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
])(images_ok[i])
return images_tensor
示例6: __getitem__
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def __getitem__(self, index):
im, xpatch, ypatch, rotation, flip, enhance = np.unravel_index(index, self.shape)
with Image.open(self.names[im]) as img:
extractor = PatchExtractor(img=img, patch_size=PATCH_SIZE, stride=self.stride)
patch = extractor.extract_patch((xpatch, ypatch))
if rotation != 0:
patch = patch.rotate(rotation * 90)
if flip != 0:
patch = patch.transpose(Image.FLIP_LEFT_RIGHT)
if enhance != 0:
factors = np.random.uniform(.5, 1.5, 3)
patch = ImageEnhance.Color(patch).enhance(factors[0])
patch = ImageEnhance.Contrast(patch).enhance(factors[1])
patch = ImageEnhance.Brightness(patch).enhance(factors[2])
label = self.labels[self.names[im]]
return transforms.ToTensor()(patch), label
示例7: load_images
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def load_images(img_path):
# imread from img_path
img = cv2.imread(img_path)
img = cv2.resize(img, (224, 224))
# pytorch must normalize the pic by
# mean = [0.485, 0.456, 0.406]
# std = [0.229, 0.224, 0.225]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
img = transform(img)
img.unsqueeze_(0)
#img_s = img.numpy()
#img_s = np.transpose(img_s, (1, 2, 0))
#cv2.imshow("test img", img_s)
#cv2.waitKey()
return img
示例8: get_transforms
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def get_transforms(eval=False, aug=None):
trans = []
if aug["randcrop"] and not eval:
trans.append(transforms.RandomCrop(aug["randcrop"]))
if aug["randcrop"] and eval:
trans.append(transforms.CenterCrop(aug["randcrop"]))
if aug["flip"] and not eval:
trans.append(transforms.RandomHorizontalFlip())
if aug["grayscale"]:
trans.append(transforms.Grayscale())
trans.append(transforms.ToTensor())
trans.append(transforms.Normalize(mean=aug["bw_mean"], std=aug["bw_std"]))
elif aug["mean"]:
trans.append(transforms.ToTensor())
trans.append(transforms.Normalize(mean=aug["mean"], std=aug["std"]))
else:
trans.append(transforms.ToTensor())
trans = transforms.Compose(trans)
return trans
示例9: transforms
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def transforms(self) -> Compose:
return Compose([transforms.ToTensor()])
示例10: __init__
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def __init__(self, base_path, txt_file, im_size=96, frames=5):
super(Video_Provider, self).__init__()
self.base_path = base_path
self.txt_file = open(txt_file, 'r').readlines()
self.im_size = im_size
self.trans = transforms.ToTensor()
self.frames = frames
示例11: classification_task
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def classification_task(tmpdir):
model = nn.Sequential(nn.Conv2d(3, 32, 3),
nn.ReLU(),
nn.Conv2d(32, 64, 3),
nn.MaxPool2d(2),
nn.AdaptiveAvgPool2d((7, 7)),
Flatten(),
nn.Linear(7 * 7 * 64, 128),
Dropout(),
nn.Linear(128, 10)
)
model = ModelWrapper(model, nn.CrossEntropyLoss())
test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
return model, test
示例12: segmentation_task
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def segmentation_task(tmpdir):
model = nn.Sequential(nn.Conv2d(3, 32, 3),
nn.ReLU(),
nn.Conv2d(32, 64, 3),
nn.MaxPool2d(2),
nn.Conv2d(64, 64, 3),
Dropout2d(),
nn.ConvTranspose2d(64, 10, 3, 1)
)
model = ModelWrapper(model, nn.CrossEntropyLoss())
test = datasets.CIFAR10(tmpdir, train=False, download=True, transform=transforms.ToTensor())
return model, test
示例13: cifar100_loader
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def cifar100_loader(size=None,root="./cifar100",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例14: fashionmnist_loader
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def fashionmnist_loader(size=None,root="./fashionmnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param train:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = FashionMNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)
return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args)
示例15: pathimages_loader
# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import ToTensor [as 别名]
def pathimages_loader(image_paths,size=None,recursive=True,allowed_exts=['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif'],shuffle=False,batch_size=32,mean=0.5,std=0.5,transform="default",**loader_args):
"""
:param image_paths:
:param size:
:param recursive:
:param allowed_exts:
:param shuffle:
:param batch_size:
:param mean:
:param std:
:param transform:
:param loader_args:
:return:
"""
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = ImagesFromPaths(image_paths,trans,recursive=recursive,allowed_exts=allowed_exts)
return DataLoader(data,batch_size=batch_size,shuffle=shuffle,**loader_args)