当前位置: 首页>>代码示例>>Python>>正文


Python transforms.Resize方法代码示例

本文整理汇总了Python中torchvision.transforms.transforms.Resize方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.Resize方法的具体用法?Python transforms.Resize怎么用?Python transforms.Resize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.transforms.transforms的用法示例。


在下文中一共展示了transforms.Resize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: preprocess

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
开发者ID:potterhsu,项目名称:easy-faster-rcnn.pytorch,代码行数:19,代码来源:base.py

示例2: preprocess

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def preprocess(self,image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
        # resize according to the rules:
        #   1. scale shorter side to IMAGE_MIN_SIDE
        #   2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
        scale_for_shorter_side = image_min_side / min(image.width, image.height)
        longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
        scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
        scale = scale_for_shorter_side * scale_for_longer_side

        transform = transforms.Compose([
            transforms.Resize((round(image.height * scale), round(image.width * scale))),  # interpolation `BILINEAR` is applied by default
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
        image = transform(image)

        return image, scale 
开发者ID:MagicChuyi,项目名称:SlowFast-Network-pytorch,代码行数:19,代码来源:AVA.py

示例3: pil_to_tensor

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def pil_to_tensor(img, shape=(64, 64, 3), transform=None):
    """
    Convert PIL image to float tensor

    :param img: PIL image
    :type img: Image.Image
    :param shape: image shape in (H, W, C)
    :type shape: tuple or list
    :param transform: image transform
    :return: tensor
    :rtype: torch.Tensor
    """
    if transform is None:
        transform = transforms.Compose((
            transforms.Resize(shape[0]),
            transforms.ToTensor()
        ))
    return transform(img) 
开发者ID:corenel,项目名称:pytorch-glow,代码行数:20,代码来源:util.py

示例4: get_datasets

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def get_datasets(initial_pool):
    transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.RandomHorizontalFlip(),
         transforms.RandomRotation(30),
         transforms.ToTensor(),
         transforms.Normalize(3 * [0.5], 3 * [0.5]), ])
    test_transform = transforms.Compose(
        [
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(3 * [0.5], 3 * [0.5]),
        ]
    )
    # Note: We use the test set here as an example. You should make your own validation set.
    train_ds = datasets.CIFAR10('.', train=True,
                                transform=transform, target_transform=None, download=True)
    test_set = datasets.CIFAR10('.', train=False,
                                transform=test_transform, target_transform=None, download=True)

    active_set = ActiveLearningDataset(train_ds, pool_specifics={'transform': test_transform})

    # We start labeling randomly.
    active_set.label_randomly(initial_pool)
    return active_set, test_set 
开发者ID:ElementAI,项目名称:baal,代码行数:27,代码来源:vgg_mcdropout_cifar10.py

示例5: __call__

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def __call__(self, image, target):
        i, j, h, w = self.get_params(image, self.scale, self.ratio)
        image = F.resized_crop(image, i, j, h, w, self.size, self.interpolation)
        # Crop
        target['boxes'][:, [0, 2]] = target['boxes'][:, [0, 2]].clamp_(j, j + w)
        target['boxes'][:, [1, 3]] = target['boxes'][:, [1, 3]].clamp_(i, i + h)
        # Reset origin
        target['boxes'][:, [0, 2]] -= j
        target['boxes'][:, [1, 3]] -= i
        # Remove targets that are out of crop
        target_filter = (target['boxes'][:, 0] != target['boxes'][:, 2]) & \
                        (target['boxes'][:, 1] != target['boxes'][:, 3])
        target['boxes'] = target['boxes'][target_filter]
        target['labels'] = target['labels'][target_filter]
        # Resize
        target['boxes'][:, [0, 2]] *= self.size[0] / w
        target['boxes'][:, [1, 3]] *= self.size[1] / h

        return image, target 
开发者ID:frgfm,项目名称:Holocron,代码行数:21,代码来源:transforms.py

示例6: cifar100_loader

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def cifar100_loader(size=None,root="./cifar100",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """
    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())
        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
开发者ID:johnolafenwa,项目名称:TorchFusion,代码行数:41,代码来源:datasets.py

示例7: fashionmnist_loader

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def fashionmnist_loader(size=None,root="./fashionmnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())
        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = FashionMNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
开发者ID:johnolafenwa,项目名称:TorchFusion,代码行数:42,代码来源:datasets.py

示例8: pathimages_loader

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def pathimages_loader(image_paths,size=None,recursive=True,allowed_exts=['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif'],shuffle=False,batch_size=32,mean=0.5,std=0.5,transform="default",**loader_args):
    """

    :param image_paths:
    :param size:
    :param recursive:
    :param allowed_exts:
    :param shuffle:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param loader_args:
    :return:
    """
    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)
    else:
        trans = transform

    data = ImagesFromPaths(image_paths,trans,recursive=recursive,allowed_exts=allowed_exts)

    return DataLoader(data,batch_size=batch_size,shuffle=shuffle,**loader_args) 
开发者ID:johnolafenwa,项目名称:TorchFusion,代码行数:42,代码来源:datasets.py

示例9: preprocessImage

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def preprocessImage(img, use_color_jitter, image_size_dict, img_norm_info, use_caffe_pretrained_model):
		# calculate target_size and scale_factor, target_size's format is (h, w)
		w_ori, h_ori = img.width, img.height
		if w_ori > h_ori:
			target_size = (image_size_dict.get('SHORT_SIDE'), image_size_dict.get('LONG_SIDE'))
		else:
			target_size = (image_size_dict.get('LONG_SIDE'), image_size_dict.get('SHORT_SIDE'))
		h_t, w_t = target_size
		scale_factor = min(w_t/w_ori, h_t/h_ori)
		target_size = (round(scale_factor*h_ori), round(scale_factor*w_ori))
		# define and do transform
		if use_caffe_pretrained_model:
			means_norm = img_norm_info['caffe'].get('mean_rgb')
			stds_norm = img_norm_info['caffe'].get('std_rgb')
			if use_color_jitter:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			else:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			img = transform(img) * 255
			img = img[(2, 1, 0), :, :]
		else:
			means_norm = img_norm_info['pytorch'].get('mean_rgb')
			stds_norm = img_norm_info['pytorch'].get('std_rgb')
			if use_color_jitter:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			else:
				transform = transforms.Compose([transforms.Resize(target_size),
												transforms.ToTensor(),
												transforms.Normalize(mean=means_norm, std=stds_norm)])
			img = transform(img)
		# return necessary data
		return img, scale_factor, target_size 
开发者ID:DetectionBLWX,项目名称:FasterRCNN.pytorch,代码行数:42,代码来源:COCODataset.py

示例10: __init__

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def __init__(self, mode, device):

        self.device = device

        if os.path.isdir('/home/scratch/luiraf/work/data/celeba/'):
            data_root = '/home/scratch/luiraf/work/data/celeba/'
        else:
            raise FileNotFoundError('Can\'t find celebrity faces.')

        self.code_root = os.path.dirname(os.path.realpath(__file__))
        self.imgs_root = os.path.join(data_root, 'Img/img_align_celeba/')
        self.imgs_root_preprocessed = os.path.join(data_root, 'Img/img_align_celeba_preprocessed/')
        if not os.path.isdir(self.imgs_root_preprocessed):
            os.mkdir(self.imgs_root_preprocessed)
        self.data_split_file = os.path.join(data_root, 'Eval/list_eval_partition.txt')

        # input: x-y coordinate
        self.num_inputs = 2
        # output: pixel values (RGB)
        self.num_outputs = 3

        # get the labels (train/valid/test)
        train_imgs, valid_imgs, test_imgs = self.get_labels()
        if mode == 'train':
            self.image_files = train_imgs
        elif mode == 'valid':
            self.image_files = valid_imgs
        elif mode == 'test':
            self.image_files = test_imgs
        else:
            raise ValueError

        self.img_size = (32, 32, 3)
        self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                             transforms.Resize((self.img_size[0], self.img_size[1]), Image.LANCZOS),
                                             transforms.ToTensor(),
                                             ]) 
开发者ID:lmzintgraf,项目名称:cavia,代码行数:39,代码来源:tasks_celebA.py

示例11: handle

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def handle(self, source, copy_to_local=False, normalize=True,
               split=None, classification_mode=False, **transform_args):
        """

        Args:
            source:
            copy_to_local:
            normalize:
            **transform_args:

        Returns:

        """
        Dataset = self.make_indexing(CelebA)
        data_path = self.get_path(source)

        if copy_to_local:
            data_path = self.copy_to_local_path(data_path)

        if normalize and isinstance(normalize, bool):
            normalize = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]

        if classification_mode:
            train_transform = transforms.Compose([
                transforms.RandomResizedCrop(64),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
            test_transform = transforms.Compose([
                transforms.Resize(64),
                transforms.CenterCrop(64),
                transforms.ToTensor(),
                transforms.Normalize(*normalize),
            ])
        else:
            train_transform = build_transforms(normalize=normalize,
                                               **transform_args)
            test_transform = train_transform

        if split is None:
            train_set = Dataset(root=data_path, transform=train_transform,
                                download=True)
            test_set = Dataset(root=data_path, transform=test_transform)
        else:
            train_set, test_set = self.make_split(
                data_path, split, Dataset, train_transform, test_transform)
        input_names = ['images', 'labels', 'attributes']

        dim_c, dim_x, dim_y = train_set[0][0].size()
        dim_l = len(train_set.classes)
        dim_a = train_set.attributes[0].shape[0]

        dims = dict(x=dim_x, y=dim_y, c=dim_c, labels=dim_l, attributes=dim_a)
        self.add_dataset('train', train_set)
        self.add_dataset('test', test_set)
        self.set_input_names(input_names)
        self.set_dims(**dims)

        self.set_scale((-1, 1)) 
开发者ID:rdevon,项目名称:cortex,代码行数:62,代码来源:CelebA.py

示例12: _handle_STL

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def _handle_STL(self, Dataset, data_path, transform=None,
                    labeled_only=False, stl_center_crop=False,
                    stl_resize_only=False, stl_no_resize=False):
        normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

        if stl_no_resize:
            train_transform = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])
        else:
            if stl_center_crop:
                tr_trans = transforms.CenterCrop(64)
                te_trans = transforms.CenterCrop(64)
            elif stl_resize_only:
                tr_trans = transforms.Resize(64)
                te_trans = transforms.Resize(64)
            elif stl_no_resize:
                pass
            else:
                tr_trans = transforms.RandomResizedCrop(64)
                te_trans = transforms.Resize(64)

            train_transform = transforms.Compose([
                tr_trans,
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalize,
            ])
            test_transform = transforms.Compose([
                te_trans,
                transforms.ToTensor(),
                normalize,
            ])
        if labeled_only:
            split = 'train'
        else:
            split = 'train+unlabeled'
        train_set = Dataset(
            data_path, split=split, transform=train_transform, download=True)
        test_set = Dataset(
            data_path, split='test', transform=test_transform, download=True)
        return train_set, test_set 
开发者ID:rdevon,项目名称:cortex,代码行数:50,代码来源:torchvision_datasets.py

示例13: __init__

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def __init__(self, root, mode, batchsz, n_way, k_shot, k_query, resize, startidx=0):
        """

        :param root: root path of mini-imagenet
        :param mode: train, val or test
        :param batchsz: batch size of sets, not batch of imgs
        :param n_way:
        :param k_shot:
        :param k_query: num of qeruy imgs per class
        :param resize: resize to
        :param startidx: start to index label from startidx
        """

        self.batchsz = batchsz  # batch of set, not batch of imgs
        self.n_way = n_way  # n-way
        self.k_shot = k_shot  # k-shot
        self.k_query = k_query  # for evaluation
        self.setsz = self.n_way * self.k_shot  # num of samples per set
        self.querysz = self.n_way * self.k_query  # number of samples per set for evaluation
        self.resize = resize  # resize to
        self.startidx = startidx  # index label not from 0, but from startidx
        print('shuffle DB :%s, b:%d, %d-way, %d-shot, %d-query, resize:%d' % (
        mode, batchsz, n_way, k_shot, k_query, resize))

        if mode == 'train':
            self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                                 transforms.Resize((self.resize, self.resize)),
                                                 # transforms.RandomHorizontalFlip(),
                                                 # transforms.RandomRotation(5),
                                                 transforms.ToTensor(),
                                                 transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                                 ])
        else:
            self.transform = transforms.Compose([lambda x: Image.open(x).convert('RGB'),
                                                 transforms.Resize((self.resize, self.resize)),
                                                 transforms.ToTensor(),
                                                 transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
                                                 ])

        self.path = os.path.join(root, 'images')  # image path
        csvdata = self.loadCSV(os.path.join(root, mode + '.csv'))  # csv path
        self.data = []
        self.img2label = {}
        for i, (k, v) in enumerate(csvdata.items()):
            self.data.append(v)  # [[img1, img2, ...], [img111, ...]]
            self.img2label[k] = i + self.startidx  # {"img_name[:9]":label}
        self.cls_num = len(self.data)

        self.create_batch(self.batchsz) 
开发者ID:dragen1860,项目名称:MAML-Pytorch,代码行数:51,代码来源:MiniImagenet.py

示例14: idenprof_loader

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def idenprof_loader(size=None,root="./idenprof",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)


    else:
        trans = transform

    data = IdenProf(root,train=train,transform=trans,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
开发者ID:johnolafenwa,项目名称:TorchFusion,代码行数:45,代码来源:datasets.py

示例15: mnist_loader

# 需要导入模块: from torchvision.transforms import transforms [as 别名]
# 或者: from torchvision.transforms.transforms import Resize [as 别名]
def mnist_loader(size=None,root="./mnist",train=True,batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):

    """

    :param size:
    :param root:
    :param train:
    :param batch_size:
    :param mean:
    :param std:
    :param transform:
    :param download:
    :param target_transform:
    :param loader_args:
    :return:
    """

    if size is not None:
        if not isinstance(size,tuple):
            size = (size,size)

    if transform == "default":
        t = []
        if size is not None:
            t.append(transformations.Resize(size))

        t.append(transformations.ToTensor())

        if mean is not None and std is not None:
            if not isinstance(mean, tuple):
                mean = (mean,)
            if not isinstance(std, tuple):
                std = (std,)
            t.append(transformations.Normalize(mean=mean, std=std))

        trans = transformations.Compose(t)


    else:
        trans = transform

    data = MNIST(root,train=train,transform=trans,download=download,target_transform=target_transform)

    return DataLoader(data,batch_size=batch_size,shuffle=train,**loader_args) 
开发者ID:johnolafenwa,项目名称:TorchFusion,代码行数:46,代码来源:datasets.py


注:本文中的torchvision.transforms.transforms.Resize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。