本文整理汇总了Python中torchvision.transforms.functional.vflip方法的典型用法代码示例。如果您正苦于以下问题:Python functional.vflip方法的具体用法?Python functional.vflip怎么用?Python functional.vflip使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.functional
的用法示例。
在下文中一共展示了functional.vflip方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: cv_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def cv_transform(img):
# img = resize(img, size=(100, 300))
# img = to_tensor(img)
# img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
# img = crop(img, -40, -20, 1000, 1000)
# img = center_crop(img, (310, 300))
# img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = hflip(img)
# img = vflip(img)
# tl, tr, bl, br, center = five_crop(img, 100)
# img = adjust_brightness(img, 2.1)
# img = adjust_contrast(img, 1.5)
# img = adjust_saturation(img, 2.3)
# img = adjust_hue(img, 0.5)
# img = adjust_gamma(img, gamma=3, gain=0.1)
# img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
# img = to_grayscale(img, 3)
# img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
# img = gaussion_noise(img)
# img = poisson_noise(img)
img = salt_and_pepper(img)
return to_tensor(img)
示例2: pil_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def pil_transform(img):
# img = functional.resize(img, size=(100, 300))
# img = functional.to_tensor(img)
# img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
# img = functional.crop(img, -40, -20, 1000, 1000)
# img = functional.center_crop(img, (310, 300))
# img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = functional.hflip(img)
# img = functional.vflip(img)
# tl, tr, bl, br, center = functional.five_crop(img, 100)
# img = functional.adjust_brightness(img, 2.1)
# img = functional.adjust_contrast(img, 1.5)
# img = functional.adjust_saturation(img, 2.3)
# img = functional.adjust_hue(img, 0.5)
# img = functional.adjust_gamma(img, gamma=3, gain=0.1)
# img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
# img = functional.to_grayscale(img, 3)
# img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))
return functional.to_tensor(img)
示例3: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, sample):
image, label = sample['image'], sample['label']
if self.rand_flip_index is None or self.image_mode:
self.rand_flip_index = random.randint(-1,2)
# 0: horizontal flip, 1: vertical flip, -1: horizontal and vertical flip
if self.rand_flip_index == 0:
image = F.hflip(image)
label = F.hflip(label)
elif self.rand_flip_index == 1:
image = F.vflip(image)
label = F.vflip(label)
elif self.rand_flip_index == 2:
image = F.vflip(F.hflip(image))
label = F.vflip(F.hflip(label))
sample['image'], sample['label'] = image, label
return sample
示例4: center_crop_with_flip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def center_crop_with_flip(img, size, vertical_flip=False):
crop_h, crop_w = size
first_crop = F.center_crop(img, (crop_h, crop_w))
if vertical_flip:
img = F.vflip(img)
else:
img = F.hflip(img)
second_crop = F.center_crop(img, (crop_h, crop_w))
return (first_crop, second_crop)
示例5: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, image, target):
if random.random() < self.prob:
image = F.vflip(image)
target = target.transpose(1)
return image, target
示例6: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, data):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
hr, lr = data
if random.random() < 0.5:
return F.vflip(hr), F.vflip(lr)
return hr, lr
示例7: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, img, anns):
if random.random() < self.p:
img = VF.vflip(img)
anns = HF.vflip(anns, img.size)
return img, anns
return img, anns
示例8: vflip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def vflip(img):
"""Vertically flip the given PIL Image.
Args:
img (CV Image): Image to be flipped.
Returns:
PIL Image: Vertically flipped image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return cv2.flip(img, 0)
示例9: ten_crop
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def ten_crop(img, size, vertical_flip=False):
"""Crop the given CV Image into four corners and the central crop plus the
flipped version of these (horizontal flipping is used by default).
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip (bool): Use vertical flipping instead of horizontal
Returns:
tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip,
br_flip, center_flip) corresponding top left, top right,
bottom left, bottom right and center crop and same for the
flipped image.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
first_five = five_crop(img, size)
if vertical_flip:
img = vflip(img)
else:
img = hflip(img)
second_five = five_crop(img, size)
return first_five + second_five
示例10: vflip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def vflip(img, bbox):
bbox = bbox.copy()
bbox[:, 1] = 1 - bbox[:, 1]
bbox[:, 3] = 1 - bbox[:, 3]
return TF.vflip(img), bbox
示例11: vflip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def vflip(img, coor):
coor = coor.copy()
coor[:, 1] = 1 - coor[:, 1]
return TF.vflip(img), coor
示例12: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, *imgs):
if random.random() < self.p:
return map(F.vflip, imgs)
else:
return imgs
示例13: _verticalFlip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def _verticalFlip(img, points=None, labels=None):
img = F.vflip(img)
if points is not None and len(labels):
points[:,1] = img.size[1] - points[:,1]
return img, points, labels
示例14: _verticalFlip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def _verticalFlip(img, bboxes=None, labels=None):
img = F.vflip(img)
if bboxes is not None and len(labels):
bboxes[:,1] = img.size[1] - (bboxes[:,1] + bboxes[:,3])
return img, bboxes, labels
示例15: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import vflip [as 别名]
def __call__(self, image):
return F.vflip(image)