本文整理汇总了Python中torchvision.transforms.functional.to_pil_image方法的典型用法代码示例。如果您正苦于以下问题:Python functional.to_pil_image方法的具体用法?Python functional.to_pil_image怎么用?Python functional.to_pil_image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.functional
的用法示例。
在下文中一共展示了functional.to_pil_image方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: process
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def process(eval_img, device='cpu'):
(img, origin, unpadder), file_name = eval_img
with torch.no_grad():
out = model(img.to(device))
prob = F.sigmoid(out)
mask = prob > 0.5
mask = torch.nn.MaxPool2d(kernel_size=(3, 3), padding=(1, 1), stride=1)(mask.float()).byte()
mask = unpadder(mask)
mask = mask.float().cpu()
save_image(mask, file_name + ' _mask.jpg')
origin_np = np.array(to_pil_image(origin[0]))
mask_np = to_pil_image(mask[0]).convert("L")
mask_np = np.array(mask_np, dtype='uint8')
mask_np = draw_bounding_box(origin_np, mask_np, 500)
mask_ = Image.fromarray(mask_np)
mask_.save(file_name + "_contour.jpg")
# ret, mask_np = cv2.threshold(mask_np, 127, 255, 0)
# dst = cv2.inpaint(origin_np, mask_np, 1, cv2.INPAINT_NS)
# out = Image.fromarray(dst)
# out.save(file_name + ' _box.jpg')
示例2: test_transform_goturn
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def test_transform_goturn(self):
base_dataset = VOT(self.vot_dir, return_rect=True, download=True)
transform = TransformGOTURN()
dataset = Pairwise(
base_dataset, transform, pairs_per_video=1,
frame_range=1, causal=True)
self.assertGreater(len(dataset), 0)
for crop_z, crop_x, labels in dataset:
self.assertEqual(crop_z.size(), crop_x.size())
if self.visualize:
for t in range(10):
crop_z, crop_x, labels = random.choice(dataset)
mean_color = torch.tensor(
transform.mean_color).float().view(3, 1, 1)
crop_z = F.to_pil_image((crop_z + mean_color) / 255.0)
crop_x = F.to_pil_image((crop_x + mean_color) / 255.0)
labels = labels.cpu().numpy()
labels *= transform.out_size / transform.label_scale_factor
bndbox = np.concatenate([
labels[:2], labels[2:] - labels[:2]])
show_frame(crop_x, bndbox, fig_n=1, pause=1)
示例3: inference
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def inference():
model.eval()
print("Begin inference on {} {}.".format(args.dataset, args.split))
for data in tqdm(dataloader):
images = [frame['image'].to(device) for frame in data]
with torch.no_grad():
preds = model(images)
preds = [torch.sigmoid(pred) for pred in preds]
# save predicted saliency maps
for i, pred_ in enumerate(preds):
for j, pred in enumerate(pred_.detach().cpu()):
dataset = data[i]['dataset'][j]
image_id = data[i]['image_id'][j]
height = data[i]['height'].item()
width = data[i]['width'].item()
result_path = os.path.join(args.results_folder, "{}/{}.png".format(dataset, image_id))
result = TF.to_pil_image(pred)
result = result.resize((height, width))
dirname = os.path.dirname(result_path)
if not os.path.exists(dirname):
os.makedirs(dirname)
result.save(result_path)
示例4: test_tta
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def test_tta():
img_f = os.path.join(settings.TEST_IMG_DIR, '0c2637aa9.jpg')
img = Image.open(img_f)
img = img.convert('RGB')
tta_index = 7
trans1 = TTATransform(tta_index)
img = trans1(img)
#img.show()
img_np = np.array(img)
img_np = np.expand_dims(img_np, 0)
print(img_np.shape)
img_np = tta_back_mask_np(img_np, tta_index)
img_np = np.reshape(img_np, (768, 768, 3))
img_back = F.to_pil_image(img_np)
img_back.show()
示例5: plot_samples
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def plot_samples(images, targets, ignore_index=None):
# Unnormalize image
nb_samples = 4
_, axes = plt.subplots(2, nb_samples, figsize=(20, 5))
for idx in range(nb_samples):
img = images[idx]
img *= torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
img += torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
img = F.to_pil_image(img)
target = targets[idx]
if isinstance(ignore_index, int):
target[target == ignore_index] = 0
axes[0][idx].imshow(img)
axes[0][idx].axis('off')
axes[1][idx].imshow(target)
axes[1][idx].axis('off')
plt.show()
示例6: plot_samples
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def plot_samples(images, targets):
# Unnormalize image
nb_samples = 4
_, axes = plt.subplots(1, nb_samples, figsize=(20, 5))
for idx in range(nb_samples):
img = images[idx]
img *= torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)
img += torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)
img = F.to_pil_image(img)
axes[idx].imshow(img)
axes[idx].axis('off')
for box, label in zip(targets[idx]['boxes'], targets[idx]['labels']):
xmin = int(box[0] * images[idx].shape[-1])
ymin = int(box[1] * images[idx].shape[-2])
xmax = int(box[2] * images[idx].shape[-1])
ymax = int(box[3] * images[idx].shape[-2])
rect = Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
linewidth=2, edgecolor='lime', facecolor='none')
axes[idx].add_patch(rect)
axes[idx].text(xmin, ymin, classes[label.item()], color='lime', fontsize=12)
plt.show()
示例7: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def __call__(self, image, mask):
# transforming to PIL image
image, mask = F.to_pil_image(image), F.to_pil_image(mask)
# random crop
if self.crop:
i, j, h, w = T.RandomCrop.get_params(image, self.crop)
image, mask = F.crop(image, i, j, h, w), F.crop(mask, i, j, h, w)
if np.random.rand() < self.p_flip:
image, mask = F.hflip(image), F.hflip(mask)
# color transforms || ONLY ON IMAGE
if self.color_jitter_params:
image = self.color_tf(image)
# random affine transform
if np.random.rand() < self.p_random_affine:
affine_params = T.RandomAffine(180).get_params((-90, 90), (1, 1), (2, 2), (-45, 45), self.crop)
image, mask = F.affine(image, *affine_params), F.affine(mask, *affine_params)
# transforming to tensor
image = F.to_tensor(image)
if not self.long_mask:
mask = F.to_tensor(mask)
else:
mask = to_long_tensor(mask)
return image, mask
示例8: __getitem__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def __getitem__(self, index):
name = self.img_names[index]
# LOAD IMG, POINT, and ROI
image = imread(os.path.join(self.path, name + ".jpg"))
points = imread(os.path.join(self.path, name + "dots.png"))[:,:,:1].clip(0,1)
roi = loadmat(os.path.join(self.path, name + "mask.mat"))["BW"][:,:,np.newaxis]
# LOAD IMG AND POINT
image = image * roi
image = hu.shrink2roi(image, roi)
points = hu.shrink2roi(points, roi).astype("uint8")
counts = torch.LongTensor(np.array([int(points.sum())]))
collection = list(map(FT.to_pil_image, [image, points]))
image, points = transformers.apply_transform(self.split, image, points,
transform_name=self.exp_dict['dataset']['transform'])
return {"images":image,
"points":points.squeeze(),
"counts":counts,
'meta':{"index":index}}
示例9: __getitem__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def __getitem__(self, index):
name = self.img_names[index]
# LOAD IMG, POINT, and ROI
image = imread(os.path.join(self.path, "images", name))
if image.ndim == 2:
image = image[:,:,None].repeat(3,2)
pointList = hu.load_mat(os.path.join(self.path,
"ground-truth",
"GT_" + name.replace(".jpg", "") +".mat"))
pointList = pointList["image_info"][0][0][0][0][0]
points = np.zeros(image.shape[:2], "uint8")[:,:,None]
H, W = image.shape[:2]
for x, y in pointList:
points[min(int(y), H-1), min(int(x), W-1)] = 1
counts = torch.LongTensor(np.array([pointList.shape[0]]))
collection = list(map(FT.to_pil_image, [image, points]))
image, points = transformers.apply_transform(self.split, image, points,
transform_name=self.exp_dict['dataset']['transform'])
return {"images":image,
"points":points.squeeze(),
"counts":counts,
'meta':{"index":index}}
示例10: apply
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def apply(image_path, model_name, model_path):
transformer = ut.ComposeJoint(
[
[transforms.ToTensor(), None],
[transforms.Normalize(*ut.mean_std), None],
[None, ut.ToLong() ]
])
# Load best model
model = model_dict[model_name](n_classes=2).cuda()
model.load_state_dict(torch.load(model_path))
# Read Image
image_raw = imread(image_path)
collection = list(map(FT.to_pil_image, [image_raw, image_raw]))
image, _ = transformer(collection)
batch = {"images":image[None]}
# Make predictions
pred_blobs = model.predict(batch, method="blobs").squeeze()
pred_counts = int(model.predict(batch, method="counts").ravel()[0])
# Save Output
save_path = image_path + "_blobs_count:{}.png".format(pred_counts)
imsave(save_path, ut.combine_image_blobs(image_raw, pred_blobs))
print("| Counts: {}\n| Output saved in: {}".format(pred_counts, save_path))
示例11: __getitem__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def __getitem__(self, index):
"""Retrieves image from folder and corrupts it."""
# Use converged image, if requested
if self.clean_targets:
target = self.reference
else:
target_fname = self.imgs[index].replace('render', 'target')
file_ext = '.exr' if self.hdr_targets else '.png'
target_fname = os.path.splitext(target_fname)[0] + file_ext
target_path = os.path.join(self.root_dir, 'target', target_fname)
if self.hdr_targets:
target = tvF.to_pil_image(load_hdr_as_tensor(target_path))
else:
target = Image.open(target_path).convert('RGB')
# Get buffers
render_path = os.path.join(self.root_dir, 'render', self.imgs[index])
albedo_path = os.path.join(self.root_dir, 'albedo', self.albedos[index])
normal_path = os.path.join(self.root_dir, 'normal', self.normals[index])
if self.hdr_buffers:
render = tvF.to_pil_image(load_hdr_as_tensor(render_path))
albedo = tvF.to_pil_image(load_hdr_as_tensor(albedo_path))
normal = tvF.to_pil_image(load_hdr_as_tensor(normal_path))
else:
render = Image.open(render_path).convert('RGB')
albedo = Image.open(albedo_path).convert('RGB')
normal = Image.open(normal_path).convert('RGB')
# Crop
if self.crop_size != 0:
buffers = [render, albedo, normal, target]
buffers = [tvF.to_tensor(b) for b in self._random_crop(buffers)]
# Stack buffers to create input volume
source = torch.cat(buffers[:3], dim=0)
target = buffers[3]
return source, target
示例12: create_montage
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def create_montage(img_name, noise_type, save_path, source_t, denoised_t, clean_t, show):
"""Creates montage for easy comparison."""
fig, ax = plt.subplots(1, 3, figsize=(9, 3))
fig.canvas.set_window_title(img_name.capitalize()[:-4])
# Bring tensors to CPU
source_t = source_t.cpu().narrow(0, 0, 3)
denoised_t = denoised_t.cpu()
clean_t = clean_t.cpu()
source = tvF.to_pil_image(source_t)
denoised = tvF.to_pil_image(torch.clamp(denoised_t, 0, 1))
clean = tvF.to_pil_image(clean_t)
# Build image montage
psnr_vals = [psnr(source_t, clean_t), psnr(denoised_t, clean_t)]
titles = ['Input: {:.2f} dB'.format(psnr_vals[0]),
'Denoised: {:.2f} dB'.format(psnr_vals[1]),
'Ground truth']
zipped = zip(titles, [source, denoised, clean])
for j, (title, img) in enumerate(zipped):
ax[j].imshow(img)
ax[j].set_title(title)
ax[j].axis('off')
# Open pop up window, if requested
if show > 0:
plt.show()
# Save to files
fname = os.path.splitext(img_name)[0]
source.save(os.path.join(save_path, f'{fname}-{noise_type}-noisy.png'))
denoised.save(os.path.join(save_path, f'{fname}-{noise_type}-denoised.png'))
fig.savefig(os.path.join(save_path, f'{fname}-{noise_type}-montage.png'), bbox_inches='tight')
示例13: _instance_process
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def _instance_process(self, pic_list, params):
if isinstance(pic_list, np.ndarray):
if pic_list.ndim == 3:
return self.to_pil_image(pic_list)
elif pic_list.ndim == 4:
return [self.to_pil_image(pic_i) for pic_i in range(pic_list.shape[0])]
else:
raise TypeError
raise TypeError
示例14: to_pil_image
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def to_pil_image(self, pic):
if pic.shape[2] == 3:
return ImageData(F.to_pil_image(pic, self.mode))
elif pic.shape[2] == 1:
return ImageData(F.to_pil_image(pic))
elif pic.shape[2] == 5:
if self.use_flow:
pic_rgb = F.to_pil_image(pic[..., :3], self.mode)
pic_x = F.to_pil_image(pic[..., 3:4])
pic_y = F.to_pil_image(pic[..., 4:5])
return ImageData(pic_rgb, pic_x, pic_y)
else:
return ImageData(F.to_pil_image(pic[..., :3], self.mode))
else:
raise ValueError
示例15: convert_cell_to_img
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import to_pil_image [as 别名]
def convert_cell_to_img(t, padding=16):
"""Converts pytorch tensor into a Pillow Image. The padding will be removed
from the resulting image"""
std = torch.Tensor([0.229, 0.224, 0.225]).reshape(-1, 1, 1)
mu = torch.Tensor([0.485, 0.456, 0.406]).reshape(-1, 1, 1)
output = t.mul(std)
output.add_(mu)
img = to_pil_image(output)
w, h = img.size
return img.crop((padding, padding, w - padding, h - padding))