本文整理汇总了Python中torchvision.transforms.functional.resized_crop方法的典型用法代码示例。如果您正苦于以下问题:Python functional.resized_crop方法的具体用法?Python functional.resized_crop怎么用?Python functional.resized_crop使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.functional
的用法示例。
在下文中一共展示了functional.resized_crop方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: process_images
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def process_images(self, clean, mask):
i, j, h, w = RandomResizedCrop.get_params(clean, scale=(0.5, 2.0), ratio=(3. / 4., 4. / 3.))
clean_img = resized_crop(clean, i, j, h, w, size=self.img_size, interpolation=Image.BICUBIC)
mask = resized_crop(mask, i, j, h, w, self.img_size, interpolation=Image.BICUBIC)
# get mask before further image augment
# mask = self.get_mask(raw_img, clean_img)
if self.add_random_masks:
mask = random_masks(mask.copy(), size=self.img_size[0], offset=10)
mask = np.where(np.array(mask) > brightness_difference * 255, np.uint8(255), np.uint8(0))
mask = cv2.dilate(mask, np.ones((10, 10), np.uint8), iterations=1)
mask = np.expand_dims(mask, -1)
mask_t = to_tensor(mask)
# mask_t = (mask_t > brightness_difference).float()
# mask_t, _ = torch.max(mask_t, dim=0, keepdim=True)
binary_mask = (1 - mask_t) # valid positions are 1; holes are 0
binary_mask = binary_mask.expand(3, -1, -1)
clean_img = self.transformer(clean_img)
corrupted_img = clean_img * binary_mask
return corrupted_img, binary_mask, clean_img
示例2: resized_crop
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def resized_crop(img, i, j, h, w, size, interpolation='BILINEAR'):
"""Crop the given CV Image and resize it to desired size. Notably used in RandomResizedCrop.
Args:
img (np.ndarray): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size. Same semantics as ``scale``.
interpolation (str, optional): Desired interpolation. Default is
``BILINEAR``.
Returns:
np.ndarray: Cropped image.
"""
assert _is_numpy_image(img), 'img should be CV Image'
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation)
return img
示例3: cv_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def cv_transform(img):
# img = resize(img, size=(100, 300))
# img = to_tensor(img)
# img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
# img = crop(img, -40, -20, 1000, 1000)
# img = center_crop(img, (310, 300))
# img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = hflip(img)
# img = vflip(img)
# tl, tr, bl, br, center = five_crop(img, 100)
# img = adjust_brightness(img, 2.1)
# img = adjust_contrast(img, 1.5)
# img = adjust_saturation(img, 2.3)
# img = adjust_hue(img, 0.5)
# img = adjust_gamma(img, gamma=3, gain=0.1)
# img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
# img = to_grayscale(img, 3)
# img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
# img = gaussion_noise(img)
# img = poisson_noise(img)
img = salt_and_pepper(img)
return to_tensor(img)
示例4: pil_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def pil_transform(img):
# img = functional.resize(img, size=(100, 300))
# img = functional.to_tensor(img)
# img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
# img = functional.crop(img, -40, -20, 1000, 1000)
# img = functional.center_crop(img, (310, 300))
# img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = functional.hflip(img)
# img = functional.vflip(img)
# tl, tr, bl, br, center = functional.five_crop(img, 100)
# img = functional.adjust_brightness(img, 2.1)
# img = functional.adjust_contrast(img, 1.5)
# img = functional.adjust_saturation(img, 2.3)
# img = functional.adjust_hue(img, 0.5)
# img = functional.adjust_gamma(img, gamma=3, gain=0.1)
# img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
# img = functional.to_grayscale(img, 3)
# img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))
return functional.to_tensor(img)
示例5: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, image, target):
i, j, h, w = self.get_params(image, self.scale, self.ratio)
image = F.resized_crop(image, i, j, h, w, self.size, self.interpolation)
# Crop
target['boxes'][:, [0, 2]] = target['boxes'][:, [0, 2]].clamp_(j, j + w)
target['boxes'][:, [1, 3]] = target['boxes'][:, [1, 3]].clamp_(i, i + h)
# Reset origin
target['boxes'][:, [0, 2]] -= j
target['boxes'][:, [1, 3]] -= i
# Remove targets that are out of crop
target_filter = (target['boxes'][:, 0] != target['boxes'][:, 2]) & \
(target['boxes'][:, 1] != target['boxes'][:, 3])
target['boxes'] = target['boxes'][target_filter]
target['labels'] = target['labels'][target_filter]
# Resize
target['boxes'][:, [0, 2]] *= self.size[0] / w
target['boxes'][:, [1, 3]] *= self.size[1] / h
return image, target
示例6: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img1, img2):
img1 = tvF.resize(img1, self.size, interpolation=Image.LANCZOS)
img2 = tvF.resize(img2, self.size, interpolation=Image.LANCZOS)
if random.random() < 0.5:
img1 = tvF.hflip(img1)
img2 = tvF.hflip(img2)
if random.random() < 0.5:
rot = random.uniform(-10, 10)
crop_ratio = rot_crop(rot)
img1 = tvF.rotate(img1, rot, resample=Image.BILINEAR)
img2 = tvF.rotate(img2, rot, resample=Image.BILINEAR)
img1 = tvF.center_crop(img1, int(img1.size[0] * crop_ratio))
img2 = tvF.center_crop(img2, int(img2.size[0] * crop_ratio))
i, j, h, w = self.get_params(img1, self.scale, self.ratio)
# return the image with the same transformation
return (tvF.resized_crop(img1, i, j, h, w, self.size, self.interpolation),
tvF.resized_crop(img2, i, j, h, w, self.size, self.interpolation))
示例7: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img):
if self.randomize:
self.random_crop = self.get_params(img, self.scale, self.ratio)
self.randomize = False
i, j, h, w = self.random_crop
return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)
示例8: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img, anns):
i, j, h, w = self.get_params(img, self.scale, self.ratio)
new_anns = HF.resized_crop(anns, j, i, w, h, self.size, self.min_area_frac)
if len(new_anns) == 0:
return img, anns
img = VF.resized_crop(img, i, j, h, w, self.size[::-1], self.interpolation)
return img, new_anns
示例9: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img_dict):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
keys = ['rgb', 'ir', 'depth']
i, j, h, w = self.get_params(img_dict[keys[0]], self.scale, self.ratio)
for key in keys:
img_dict[key] = F.resized_crop(img_dict[key], i, j, h, w,
self.size, self.interpolation)
return img_dict
示例10: _transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def _transform(
self, frames: PILVideo, params: Tuple[ImageShape, Point]
) -> PILVideoI:
crop_shape, offset = params
for frame in frames:
yield F.resized_crop(
frame,
offset.y,
offset.x,
crop_shape.height,
crop_shape.width,
size=self.size,
interpolation=self.interpolation,
)
pass
示例11: _transform_frame
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def _transform_frame(self, frame: Image, i: int, j: int, h: int, w: int) -> Image:
return F.resized_crop(frame, i, j, h, w, self.size, self.interpolation)
示例12: __getitem__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __getitem__(self, index):
# In this situation ignore index and sample classes uniformly
if self.balance_classes:
currCls = random.choice(self.attToImgId.keys())
index = random.choice(self.attToImgId[currCls])
cid = [self.sattr_to_idx[currCls]] if currCls != 'bg' else [0]
else:
cid = [0]
image = Image.open(os.path.join(self.image_path,self.dataset['images'][index]['filepath'], self.dataset['images'][index]['filename']))
if image.mode != 'RGB':
#print image.mode
image = image.convert('RGB')
bbox, bboxLabel, cbid = self.randomBBoxSample(index)
label = self.dataset['images'][index]['label']
# Apply transforms to the image.
image = self.transform[0](image)
# Now do the flipping
if self.randHFlip and random.random()>0.5:
image = FN.hflip(image)
bbox[0] = 1.0-(bbox[0]+bbox[2])
#Convert BBox to actual co-ordinates
bbox = [int(bc*self.out_img_size) for bc in bbox]
#print bbox, image.size, cbid
#assert bbox[3]>0;
#assert bbox[2]>0;
#if not ((bbox[0]>=0) and (bbox[0]<128)):
# print bbox;
# import ipdb;ipdb.set_trace()
#assert ((bbox[0]>=0) and (bbox[0]<128));
#assert ((bbox[1]>=0) and (bbox[1]<128))
#Now obtain the crop
boxCrop = FN.resized_crop(image, bbox[1], bbox[0], bbox[3],bbox[2], (self.bbox_out_size, self.bbox_out_size))
# Create Mask
mask = torch.zeros(1,self.out_img_size,self.out_img_size)
mask[0,bbox[1]:bbox[1]+bbox[3],bbox[0]:bbox[0]+bbox[2]] = 1.
return self.transform[-1](image), torch.FloatTensor(label), self.transform[-1](boxCrop), torch.FloatTensor(bboxLabel), mask, torch.IntTensor(bbox), torch.LongTensor(cid)
示例13: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale, self.ratio)
if isinstance(self.interpolation, (tuple, list)):
interpolation = random.choice(self.interpolation)
else:
interpolation = self.interpolation
return F.resized_crop(img, i, j, h, w, self.size, interpolation)
示例14: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(img, self.scale)
return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)
示例15: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import resized_crop [as 别名]
def __call__(self, sample):
image, label = sample['image'], sample['label']
if self.i is None or self.image_mode:
self.i, self.j, self.h, self.w = transforms.RandomResizedCrop.get_params(image, self.scale, self.ratio)
image = F.resized_crop(image, self.i, self.j, self.h, self.w, self.size, Image.BILINEAR)
label = F.resized_crop(label, self.i, self.j, self.h, self.w, self.size, Image.BILINEAR)
sample['image'], sample['label'] = image, label
return sample