本文整理汇总了Python中torchvision.transforms.functional.hflip方法的典型用法代码示例。如果您正苦于以下问题:Python functional.hflip方法的具体用法?Python functional.hflip怎么用?Python functional.hflip使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.functional
的用法示例。
在下文中一共展示了functional.hflip方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: flip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def flip(image, boxes):
"""
Flip image horizontally.
:param image: image, a PIL Image
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:return: flipped image, updated bounding box coordinates
"""
# Flip image
new_image = FT.hflip(image)
# Flip boxes
new_boxes = boxes
new_boxes[:, 0] = image.width - boxes[:, 0] - 1
new_boxes[:, 2] = image.width - boxes[:, 2] - 1
new_boxes = new_boxes[:, [2, 1, 0, 3]]
return new_image, new_boxes
示例2: cv_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def cv_transform(img):
# img = resize(img, size=(100, 300))
# img = to_tensor(img)
# img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
# img = crop(img, -40, -20, 1000, 1000)
# img = center_crop(img, (310, 300))
# img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = hflip(img)
# img = vflip(img)
# tl, tr, bl, br, center = five_crop(img, 100)
# img = adjust_brightness(img, 2.1)
# img = adjust_contrast(img, 1.5)
# img = adjust_saturation(img, 2.3)
# img = adjust_hue(img, 0.5)
# img = adjust_gamma(img, gamma=3, gain=0.1)
# img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
# img = to_grayscale(img, 3)
# img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
# img = gaussion_noise(img)
# img = poisson_noise(img)
img = salt_and_pepper(img)
return to_tensor(img)
示例3: pil_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def pil_transform(img):
# img = functional.resize(img, size=(100, 300))
# img = functional.to_tensor(img)
# img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
# img = functional.crop(img, -40, -20, 1000, 1000)
# img = functional.center_crop(img, (310, 300))
# img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = functional.hflip(img)
# img = functional.vflip(img)
# tl, tr, bl, br, center = functional.five_crop(img, 100)
# img = functional.adjust_brightness(img, 2.1)
# img = functional.adjust_contrast(img, 1.5)
# img = functional.adjust_saturation(img, 2.3)
# img = functional.adjust_hue(img, 0.5)
# img = functional.adjust_gamma(img, gamma=3, gain=0.1)
# img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
# img = functional.to_grayscale(img, 3)
# img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))
return functional.to_tensor(img)
示例4: getbyIdAndclass
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def getbyIdAndclass(self, imgid, cls, hflip=0):
if (imgid not in self.imgId2idx) or (cls == 'bg'):
maskTotal = np.zeros((128,128))
else:
index= self.imgId2idx[imgid]
catId = self.dataset.getCatIds(cls)
maskTotal = np.zeros((self.imgSizes[index][0], self.imgSizes[index][1]))
if len(self.catsInImg[index]) and (catId[0] in self.catsInImg[index]) and (cls in self.imgToCatToAnns[imgid]):
# Randomly sample an annotation
for annIndex in self.imgToCatToAnns[imgid][cls]:
ann = self.mRCNN_results[annIndex]
cm = self.dataset.annToMask(ann)
maskTotal[:cm.shape[0],:cm.shape[1]] += cm
if hflip:
maskTotal = maskTotal[:,::-1]
mask = torch.FloatTensor(np.asarray(self.transform(Image.fromarray(np.clip(maskTotal,0,1)))))[None,::]
return mask
示例5: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, sample):
image, label = sample['image'], sample['label']
if self.rand_flip_index is None or self.image_mode:
self.rand_flip_index = random.randint(-1,2)
# 0: horizontal flip, 1: vertical flip, -1: horizontal and vertical flip
if self.rand_flip_index == 0:
image = F.hflip(image)
label = F.hflip(label)
elif self.rand_flip_index == 1:
image = F.vflip(image)
label = F.vflip(label)
elif self.rand_flip_index == 2:
image = F.vflip(F.hflip(image))
label = F.vflip(F.hflip(label))
sample['image'], sample['label'] = image, label
return sample
示例6: center_crop_with_flip
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def center_crop_with_flip(img, size, vertical_flip=False):
crop_h, crop_w = size
first_crop = F.center_crop(img, (crop_h, crop_w))
if vertical_flip:
img = F.vflip(img)
else:
img = F.hflip(img)
second_crop = F.center_crop(img, (crop_h, crop_w))
return (first_crop, second_crop)
示例7: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, image, target):
if random.random() < self.prob:
image = F.hflip(image)
target = target.transpose(0)
return image, target
示例8: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, image, mask):
# transforming to PIL image
image, mask = F.to_pil_image(image), F.to_pil_image(mask)
# random crop
if self.crop:
i, j, h, w = T.RandomCrop.get_params(image, self.crop)
image, mask = F.crop(image, i, j, h, w), F.crop(mask, i, j, h, w)
if np.random.rand() < self.p_flip:
image, mask = F.hflip(image), F.hflip(mask)
# color transforms || ONLY ON IMAGE
if self.color_jitter_params:
image = self.color_tf(image)
# random affine transform
if np.random.rand() < self.p_random_affine:
affine_params = T.RandomAffine(180).get_params((-90, 90), (1, 1), (2, 2), (-45, 45), self.crop)
image, mask = F.affine(image, *affine_params), F.affine(mask, *affine_params)
# transforming to tensor
image = F.to_tensor(image)
if not self.long_mask:
mask = F.to_tensor(mask)
else:
mask = to_long_tensor(mask)
return image, mask
示例9: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, image, target):
if random.random() < self.prob:
image = F.hflip(image)
target = target.transpose(0, self.left_right)
return image, target
示例10: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, image, target):
if random.random() < self.flip_prob:
image = F.hflip(image)
target = F.hflip(target)
return image, target
示例11: _instance_process
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def _instance_process(self, img, flip_flag):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
if flip_flag:
img.img = F.hflip(img.img)
if img.x is not None:
img.x = ImageOps.invert(img.x)
return img
示例12: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, img, pt):
if self.p > np.random.rand():
w, _ = img.size
img = tf.hflip(img)
pt_new = np.zeros_like(pt)
pt_mask = pt.sum(axis=1) > 0
pt_new[pt_mask] = np.vstack((w - 1 - pt[pt_mask][:, 0], pt[pt_mask][:, 1])).T
return img, pt_new
return img, pt
示例13: build_transforms
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def build_transforms(height, width, is_train, data_augment, **kwargs):
"""Build transforms
Args:
- height (int): target image height.
- width (int): target image width.
- is_train (bool): train or test phase.
- data_augment (str)
"""
# use imagenet mean and std as default
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
normalize = Normalize(mean=imagenet_mean, std=imagenet_std)
transforms = []
if is_train:
transforms = build_training_transforms(height, width, data_augment)
else:
transforms += [Resize((height, width))]
if kwargs.get('flip', False):
transforms += [Lambda(lambda img: TF.hflip(img))]
transforms += [ToTensor()]
transforms += [normalize]
transforms = Compose(transforms)
if is_train:
print('Using transform:', transforms)
return transforms
示例14: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be flipped.
Returns:
PIL.Image: Randomly flipped image.
"""
if self.random_p < self.p:
return F.hflip(img)
return img
示例15: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import hflip [as 别名]
def __call__(self, data):
"""
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Randomly flipped image.
"""
hr, lr = data
if random.random() < 0.5:
return F.hflip(hr), F.hflip(lr)
return hr, lr