当前位置: 首页>>代码示例>>Python>>正文


Python functional.affine方法代码示例

本文整理汇总了Python中torchvision.transforms.functional.affine方法的典型用法代码示例。如果您正苦于以下问题:Python functional.affine方法的具体用法?Python functional.affine怎么用?Python functional.affine使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torchvision.transforms.functional的用法示例。


在下文中一共展示了functional.affine方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_params

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation
        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = np.random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(np.random.uniform(-max_dx, max_dx)),
                            np.round(np.random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = np.random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            shear = np.random.uniform(shears[0], shears[1])
        else:
            shear = 0.0

        return angle, translations, scale, shear 
开发者ID:perone,项目名称:medicaltorch,代码行数:27,代码来源:transforms.py

示例2: cv_transform

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def cv_transform(img):
    # img = resize(img, size=(100, 300))
    # img = to_tensor(img)
    # img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
    # img = crop(img, -40, -20, 1000, 1000)
    # img = center_crop(img, (310, 300))
    # img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = hflip(img)
    # img = vflip(img)
    # tl, tr, bl, br, center = five_crop(img, 100)
    # img = adjust_brightness(img, 2.1)
    # img = adjust_contrast(img, 1.5)
    # img = adjust_saturation(img, 2.3)
    # img = adjust_hue(img, 0.5)
    # img = adjust_gamma(img, gamma=3, gain=0.1)
    # img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
    # img = to_grayscale(img, 3)
    # img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
    # img = gaussion_noise(img)
    # img = poisson_noise(img)
    img = salt_and_pepper(img)
    return to_tensor(img) 
开发者ID:YU-Zhiyang,项目名称:opencv_transforms_torchvision,代码行数:26,代码来源:cvfunctional.py

示例3: pil_transform

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def pil_transform(img):
    # img = functional.resize(img, size=(100, 300))
    # img = functional.to_tensor(img)
    # img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    # img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
    # img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
    # img = functional.crop(img, -40, -20, 1000, 1000)
    # img = functional.center_crop(img, (310, 300))
    # img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
    # img = functional.hflip(img)
    # img = functional.vflip(img)
    # tl, tr, bl, br, center = functional.five_crop(img, 100)
    # img = functional.adjust_brightness(img, 2.1)
    # img = functional.adjust_contrast(img, 1.5)
    # img = functional.adjust_saturation(img, 2.3)
    # img = functional.adjust_hue(img, 0.5)
    # img = functional.adjust_gamma(img, gamma=3, gain=0.1)
    # img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
    # img = functional.to_grayscale(img, 3)
    # img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))

    return functional.to_tensor(img) 
开发者ID:YU-Zhiyang,项目名称:opencv_transforms_torchvision,代码行数:24,代码来源:cvfunctional.py

示例4: __call__

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def __call__(self, img, mask):
        rotate_degree = random.random() * 2 * self.degree - self.degree
        return (
            tf.affine(img, 
                      translate=(0, 0),
                      scale=1.0, 
                      angle=rotate_degree, 
                      resample=Image.BILINEAR,
                      fillcolor=(0, 0, 0),
                      shear=0.0),
            tf.affine(mask, 
                      translate=(0, 0), 
                      scale=1.0, 
                      angle=rotate_degree, 
                      resample=Image.NEAREST,
                      fillcolor=250,
                      shear=0.0)) 
开发者ID:RogerZhangzz,项目名称:CAG_UDA,代码行数:19,代码来源:augmentations.py

示例5: __call__

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def __call__(self, img, mask):
        rotate_degree = random.random() * 2 * self.degree - self.degree
        return (
            tf.affine(
                img,
                translate=(0, 0),
                scale=1.0,
                angle=rotate_degree,
                resample=Image.BILINEAR,
                fillcolor=(0, 0, 0),
                shear=0.0,
            ),
            tf.affine(
                mask,
                translate=(0, 0),
                scale=1.0,
                angle=rotate_degree,
                resample=Image.NEAREST,
                fillcolor=250,
                shear=0.0,
            ),
        ) 
开发者ID:meetshah1995,项目名称:pytorch-semseg,代码行数:24,代码来源:augmentations.py

示例6: __call__

# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import affine [as 别名]
def __call__(self, img, mask):
        rotate_degree = random.random() * 2 * self.degree - self.degree
        return (
            tf.affine(img,
                      translate=(0, 0),
                      scale=1.0,
                      angle=rotate_degree,
                      resample=Image.BILINEAR,
                      fillcolor=(0, 0, 0),
                      shear=0.0),
            tf.affine(mask,
                      translate=(0, 0),
                      scale=1.0,
                      angle=rotate_degree,
                      resample=Image.NEAREST,
                      fillcolor=250,
                      shear=0.0)) 
开发者ID:arnab39,项目名称:Semi-supervised-segmentation-cycleGAN,代码行数:19,代码来源:augmentations.py


注:本文中的torchvision.transforms.functional.affine方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。