本文整理汇总了Python中torchvision.transforms.functional.adjust_saturation方法的典型用法代码示例。如果您正苦于以下问题:Python functional.adjust_saturation方法的具体用法?Python functional.adjust_saturation怎么用?Python functional.adjust_saturation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torchvision.transforms.functional
的用法示例。
在下文中一共展示了functional.adjust_saturation方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: adjust_saturation
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (np.ndarray): CV Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a gray image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
np.ndarray: Saturation adjusted image.
"""
if not _is_numpy_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
im = img.astype(np.float32)
degenerate = cv2.cvtColor(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
im = (1-saturation_factor) * degenerate + saturation_factor * im
im = im.clip(min=0, max=255)
return im.astype(img.dtype)
示例2: cv_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def cv_transform(img):
# img = resize(img, size=(100, 300))
# img = to_tensor(img)
# img = normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = pad(img, padding=(100, 100, 100, 100), fill=5, padding_mode='symmetric')
# img = crop(img, -40, -20, 1000, 1000)
# img = center_crop(img, (310, 300))
# img = resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = hflip(img)
# img = vflip(img)
# tl, tr, bl, br, center = five_crop(img, 100)
# img = adjust_brightness(img, 2.1)
# img = adjust_contrast(img, 1.5)
# img = adjust_saturation(img, 2.3)
# img = adjust_hue(img, 0.5)
# img = adjust_gamma(img, gamma=3, gain=0.1)
# img = rotate(img, 10, resample='BILINEAR', expand=True, center=None)
# img = to_grayscale(img, 3)
# img = affine(img, 10, (0, 0), 1, 0, resample='BICUBIC', fillcolor=(255,255,0))
# img = gaussion_noise(img)
# img = poisson_noise(img)
img = salt_and_pepper(img)
return to_tensor(img)
示例3: pil_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def pil_transform(img):
# img = functional.resize(img, size=(100, 300))
# img = functional.to_tensor(img)
# img = functional.normalize(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# img = functional.pad(img, padding=(10, 10, 20, 20), fill=(255, 255, 255), padding_mode='constant')
# img = functional.pad(img, padding=(100, 100, 100, 100), padding_mode='symmetric')
# img = functional.crop(img, -40, -20, 1000, 1000)
# img = functional.center_crop(img, (310, 300))
# img = functional.resized_crop(img, -10.3, -20, 330, 220, (500, 500))
# img = functional.hflip(img)
# img = functional.vflip(img)
# tl, tr, bl, br, center = functional.five_crop(img, 100)
# img = functional.adjust_brightness(img, 2.1)
# img = functional.adjust_contrast(img, 1.5)
# img = functional.adjust_saturation(img, 2.3)
# img = functional.adjust_hue(img, 0.5)
# img = functional.adjust_gamma(img, gamma=3, gain=0.1)
# img = functional.rotate(img, 10, resample=PIL.Image.BILINEAR, expand=True, center=None)
# img = functional.to_grayscale(img, 3)
# img = functional.affine(img, 10, (0, 0), 1, 0, resample=PIL.Image.BICUBIC, fillcolor=(255,255,0))
return functional.to_tensor(img)
示例4: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def __call__(self, inputs, disps):
inputs = [Image.fromarray(np.uint8(inp)) for inp in inputs]
if self.brightness > 0:
brightness_factor = np.random.uniform(max(0, 1 - self.brightness), 1 + self.brightness)
inputs = [F.adjust_brightness(inp, brightness_factor) for inp in inputs]
if self.contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - self.contrast), 1 + self.contrast)
inputs = [F.adjust_contrast(inp, contrast_factor) for inp in inputs]
if self.saturation > 0:
saturation_factor = np.random.uniform(max(0, 1 - self.saturation), 1 + self.saturation)
inputs = [F.adjust_saturation(inp, saturation_factor) for inp in inputs]
if self.hue > 0:
hue_factor = np.random.uniform(-self.hue, self.hue)
inputs = [F.adjust_hue(inp, hue_factor) for inp in inputs]
inputs = [np.asarray(inp) for inp in inputs]
inputs = [inp.clip(0,255) for inp in inputs]
return inputs, disps
示例5: get_params
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def get_params(brightness, contrast, saturation, hue):
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(Lambda_image(lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(Lambda_image(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(Lambda_image(lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(Lambda_image(lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(transforms)
transform = Compose(transforms)
return transform
示例6: get_params
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness > 0:
brightness_factor = random.uniform(max(0, 1 - brightness), 1 + brightness)
transforms.append(lambda img: F.adjust_brightness(img, brightness_factor))
if contrast > 0:
contrast_factor = random.uniform(max(0, 1 - contrast), 1 + contrast)
transforms.append(lambda img: F.adjust_contrast(img, contrast_factor))
if saturation > 0:
saturation_factor = random.uniform(max(0, 1 - saturation), 1 + saturation)
transforms.append(lambda img: F.adjust_saturation(img, saturation_factor))
if hue > 0:
hue_factor = random.uniform(-hue, hue)
transforms.append(lambda img: F.adjust_hue(img, hue_factor))
random.shuffle(transforms)
return transforms
示例7: photometric_distort
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def photometric_distort(image):
"""
Distort brightness, contrast, saturation, and hue, each with a 50% chance, in random order.
:param image: image, a PIL Image
:return: distorted image
"""
new_image = image
distortions = [FT.adjust_brightness,
FT.adjust_contrast,
FT.adjust_saturation,
FT.adjust_hue]
random.shuffle(distortions)
for d in distortions:
if random.random() < 0.5:
if d.__name__ is 'adjust_hue':
# Caffe repo uses a 'hue_delta' of 18 - we divide by 255 because PyTorch needs a normalized value
adjust_factor = random.uniform(-18 / 255., 18 / 255.)
else:
# Caffe repo uses 'lower' and 'upper' values of 0.5 and 1.5 for brightness, contrast, and saturation
adjust_factor = random.uniform(0.5, 1.5)
# Apply this distortion
new_image = d(new_image, adjust_factor)
return new_image
示例8: get_params
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(torchvision.transforms.Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(torchvision.transforms.Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(torchvision.transforms.Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(torchvision.transforms.Lambda(lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(transforms)
transform = torchvision.transforms.Compose(transforms)
return transform
示例9: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def __call__(self, img, pt):
transforms = [
tf.adjust_brightness,
tf.adjust_contrast,
tf.adjust_saturation
]
random.shuffle(transforms)
for t in transforms:
img = t(img, (np.random.rand() - 0.5) * 2 * self.factor + 1)
return img, pt
示例10: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def __call__(self, seq_blur, seq_clear):
seq_blur = [Image.fromarray(np.uint8(img)) for img in seq_blur]
seq_clear = [Image.fromarray(np.uint8(img)) for img in seq_clear]
if self.brightness > 0:
brightness_factor = np.random.uniform(max(0, 1 - self.brightness), 1 + self.brightness)
seq_blur = [F.adjust_brightness(img, brightness_factor) for img in seq_blur]
seq_clear = [F.adjust_brightness(img, brightness_factor) for img in seq_clear]
if self.contrast > 0:
contrast_factor = np.random.uniform(max(0, 1 - self.contrast), 1 + self.contrast)
seq_blur = [F.adjust_contrast(img, contrast_factor) for img in seq_blur]
seq_clear = [F.adjust_contrast(img, contrast_factor) for img in seq_clear]
if self.saturation > 0:
saturation_factor = np.random.uniform(max(0, 1 - self.saturation), 1 + self.saturation)
seq_blur = [F.adjust_saturation(img, saturation_factor) for img in seq_blur]
seq_clear = [F.adjust_saturation(img, saturation_factor) for img in seq_clear]
if self.hue > 0:
hue_factor = np.random.uniform(-self.hue, self.hue)
seq_blur = [F.adjust_hue(img, hue_factor) for img in seq_blur]
seq_clear = [F.adjust_hue(img, hue_factor) for img in seq_clear]
seq_blur = [np.asarray(img) for img in seq_blur]
seq_clear = [np.asarray(img) for img in seq_clear]
seq_blur = [img.clip(0,255) for img in seq_blur]
seq_clear = [img.clip(0,255) for img in seq_clear]
return seq_blur, seq_clear
示例11: get_params
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
transforms = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(transforms)
transform = Compose(transforms)
return transform
示例12: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def __call__(self, img, mask):
assert img.size == mask.size
return tf.adjust_saturation(img,
random.uniform(1 - self.saturation,
1 + self.saturation)), mask
示例13: __call__
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def __call__(self, img, mask):
assert img.size == mask.size
return (
tf.adjust_saturation(img, random.uniform(1 - self.saturation, 1 + self.saturation)),
mask,
)
示例14: torchvision_transform
# 需要导入模块: from torchvision.transforms import functional [as 别名]
# 或者: from torchvision.transforms.functional import adjust_saturation [as 别名]
def torchvision_transform(self, img):
img = torchvision.adjust_hue(img, hue_factor=0.1)
img = torchvision.adjust_saturation(img, saturation_factor=1.2)
img = torchvision.adjust_brightness(img, brightness_factor=1.2)
return img